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ABSTRACT

Adfter more than four decades, development of anificially intelligent tutoring
syslems has been constrained by two interrelated problems: knowledge repre-
sentation and natural language understanding. G. 5. Maccia's epistemology
of intelligent natural systems implies that computer systems will need 0
develop qualitative intelligence before these problems can be solved. Recent
research on how human nervous systems develop provides evidence for the
significance of gualitative intelligence. Cualitative intelligence is required for
understanding of culturally bound meanings of signs used in communication
among intelligent natoral systems. 5. I. Greenspan provides neurological and
clinical evidence that emotion and sensation are vital to the growth of mind—
capabilities that computer systems do nol currently possess. Therefore, we
must view computers in education as media through which a multimde of
teachers can convey their messages. This does not mean that the role of
classroom teachers is diminished. Teachers and students can be empowered
by these additional leaming resources.

INTRODUCTION

The electronic information age is now here. Compuiers were invented about
half a century ago. Uniil the late 1970s, computers were large, expensive, and
typically found only in big corporations, universities, and governmental institu-
tions. Invention of inexpensive microchips containing very large-scale integrated
circuits has changed things dramatically. The personal computer, as it has come to
be called, began to appear on our desk tops around 1980. Television, computers,
and telecommunications are becoming more and more commonplace around the
world [1].

The global electronic village that Marshall McLuhan envisioned in the
1960s is now here [2]. We take it for granted, for example, that we can watch on
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TV the Olympics taking place half-way around the world. As another example,
many of us were horrified by the drama of the unfolding War in the Persian Gulf
in early 1991, brought to us live by CNN World News as Baghdad was being
bombed.

For thousands of years humankind has built and improved routes and vehicles
for transporting goods and people. We have built ships, highways, automobiles,
trucks, railways, trains, airplanes, and even dirigibles to transport things and
people from one place to another. As we enter the twenty-first century, the most
important kind of new “highways” emerging are globally interconnected digital
communications networks (e.g., the Internet) [3].

What is transported through these networks are bits of information. These bit
collections can represent whatever we want them to, whether they stand for
linguistic symbols such as letters of an alphabet, icons or ideographs, for moving
pictures and sound, for computer programs, stock market prices, or bank account
balances.

Computers, televisions, telephones, stereo systems, and radios all process
encoded information. Whether information is digitally or analogically encoded is
less important than the wend that these information technologies are merging.
Will these globally interconnected, multimedia computer-television-telephone-
stereo-radio systems largely replace teachers? Will these multimedia tutoring
systems be intelligent enough to do 507 Imagine, for example, intelligent mtoring
systems on the Web available to anyone in the world.

The notion of intelligent mioring systems is seductive. The professional
development of conventional computer-mediated learning products is very
expensive—typically 200-300 hours of development time for one hour of leamn-
ing time [4]. If somehow we could put knowledge into computers which were
smart enough to teach students, this would be a solution to the labor-intensive
methods that we currently use.

INTELLIGENT TUTORING SYSTEMS

Intelligent tutoring systems are typically conceived as having a knowledge
base, a set of pedagogical rules, a model of the student, and a natural language
interface [5, 6]. The artificial intelligence (AI) community has run into serious
difficulties in both knowledge representation and natural language understanding
[7, 8]. While there were some notable early successes, such as Terry Winograd's
blocks world [9], the knowledge representation and natural language problems
have proven to be largely intractable [6, 10].

Nonetheless, two arcas of Al have met with some success. Expert sysiems and
neural networks have proven themselves to be quite useful for certain kinds of
tasks [11-13].
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Expert Systems

Expert systems consist of rules, usually if an “If . . ., then . . .” form. These rules
are created by knowledge engineers, who iry to capmre the reasoning processes
of experts who solve problems in some domain. These rules constitute a database
for a computer program called an “inference engine.” When a person uses such an
expernt system, he or she interactively answers questions that were previously
programmed into the database by the knowledge engineers. The inference engine
uses as further data the answers provided, in order to follow a particular path of
reasoning (by doing forward or backward chaining through the rule set). Through
such interaction with a user, the expert system reaches a conclusion or decision
and displays the result.

While expert systems can reason deductively quite well within a narmow
domain, they are helpless and useless outside that domain. Moreover, such sys-
tems cannot be said to understand the meaning of the terms used in the reasoning
process [10]. Expert systems follow the rules for reasoning that are established
by the knowledge engineers. If such rules are faulty, incomrect inferences will
be drawn by the expert system.

Neural Networks

Meural networks are similar to expert systems in that a given set of inputs will
produce the same output. The major difference is that neural networks create the
“mles™ themselves. This leaming occurs through practice and feedback—a sort of
Pavlovian conditioning. Dreyfus points out that we humans do not know what the
networks are necessarily leaming [8, 10]. He referred to one example, where such
a network appeared to have learned to identify military tanks from aerial photos.
When it was tested on a new set of stimuli, it made numerous mistakes. On
hindsight, researchers discovered that during training, the photos which had tanks
in them were taken on cloudy days, and ones without tanks were taken on sunny
days. The network had leamed to discriminate cloudy and sunny days, not
whether tanks were present. In another example, a neural network apparently had
leamed to drive a van, where the primary input came from a video camera
focused on the road ahead [10]. The net appeared to have leamned to keep the van
on its side of the road when driving at slow speeds. However, when it was tested
on an interstate highway, it had a tendency to take exits to the right. In this
case, the network had probably learned to follow the white line on the right
side of the road.

At this time, it is not clear how far we can go with neural networks. The
primary obstacle is that the number of trials necessary during training increases
exponentially with the number of components in the network.

Neural networks and expert systems have had some success in voice and
handwriting recognition. Again, however, such systems can only deal with
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limited numbers of spoken words or hand strokes with moderate reliability. These
systems do not understand the meanings of words but instead discriminate sound
patterns or two-dimensional spatial configurations. Their discrimination is aided
by data on typical grammatical patterns and normally occurs within a nammowly
prescribed context—e.g., purchasing an airline ticket—in which a limited
vocabulary is used with a finite set of choices and tasks to be performed.

Ongoing Projects

Two current projects are attempting to “educate” computers. Douglas Lenat
and colleagues at the University of Texas have been attempting to put factnal
knowledge and rules of human conduct into computers [14]. This ambitions Cyc
project has been under way for a number of years, and according to some, is the
last great hope for the Al community [8, 10]. Time will tell if it succeeds, and the
discussion below may shed some light on the prospects for its success. Rodney
Brooks and colleagues at the Massachusetts Institute of Technology have been
designing computers capable of learning from experience [15]. According to
Greenspan, “both approaches have failed to reach the levels projected for them,
and in creative reasoning they can be outdistanced by a young child” [16, p. 126].

THE CRUX OF THE PROELEM

Feigenbaum and Dreyfus conclude that the problems of natural language
understanding and knowledge representation are not likely to be solved until
machines have perceptual-motor capabilities that would, for example, allow them
to move physically across a room without running into things [10]. This kind
of sensorial experience with the world around us appears to be necessary for
grounding the meaning of natural language that is wsed in communication
among humans. On hindsight, this should not be surprising. John Dewey, for
one, poignantly discussed the vital relationship between experience and thinking
as being central to the leaming process [17]. Maria Montessori, for another,
designed her system of education around this relationship [18].

Recent biological and neurclogical research on how human brains develop is
shedding new light on just how vital sensory experience is [16]. Human genes
and their environment interact in ways that resemble a “dance™ between nature
and nurture. Evidence is mounting that human sensory and emotional experiences
literally build neural connections in the brain [19-21]. This research provides
empirical evidence which supporis the significance of qualitative intelligence in
creating meaning of natural language.

In this article, 1 first provide an overview of George Maccia's epistemology
which distinguishes qualitative, quantitative, and performative intelligence. Since
his epistemology is relatively unknown, details beyond this article are pro-
vided on the Web (hup:ffeducation. indiana.eduw/ist/faculiy/episcomp.himl). Next,
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I discuss implications of this epistemology for artificially intelligent tutoring
systems. Finally, I discuss research done by Greenspan and others which comple-
ments this epistemological view.

OVERVIEW OF MACCIA’S EPISTEMOLOGY

George Maccia—a scientist, mathematician, general systems theorist, and
philosopher of education during his long career—was interested in epistemology
and its relationship to educational objectives and curriculum. After several
decades of research and writing, he published a seminal article in Systems
Research, “Genetic Epistemology of Intelligent Systems™ [22]. Just before retire-
ment, he further elaborated his epistemology in a presentation to the Fourth
International Conference on Systems Research, Cybemetics and Informatics in
1988 [23]. Maccia’s research was motivated in part by concerns about inade-
quacies of the taxonomy of educational objectives developed by Benjamin Bloom
et al., which has had considerable impact on conceptions of curriculum in U.S.
public schools during the last forty years [24].

Figure 1 illustrates the basic kinds of cognition: “knowing that,” “knowing
that one,” and “knowing how.” Earlier epistemologists such as Ryle [25] and
Scheffler [26] had made distinctions between “knowing that™ and “knowing
how.” Maccia’s contribution was the addition and distinction of “knowing that
one” from “knowing that.” Moreover, his contention was that intellipence is
distributed among systems of various kinds—not just human beings—but other
forms of living and non-living systems. Such non-living systems could include
computers.

Quantitative Intelligence: “Knowing That"

“Knowing that” includes understanding of concepts. To identify some four-
legged, hairy creatures as dogs is an example of “knowing that™ or what Maccia
called “quantitative intelligence” (see Figure 1). Quantitative intelligence is
“usually associated with mental acts that employ abstractive inference (i.e.,
modes of generalization or instantiation)” [22, p. 215]. Steiner adds, “Theoretical
structures allow one to shape and group instances; they are universals and so are
generals that are independent of time and place. Although ‘guantitative’ in a
COMMON Sense pertains to numbers, in its technical sense it involves extension.
Generals independent of time and place are universal classes and so have range.
*All" is a quantifier” [27, p. 18].

Maccia distinguishes three kinds of “knowing that™: instantiation, theoretical
knowing, and criterial knowing (see Table 1). For example, to categorize Earth,
Mercury, Venus, Mars, etc. as instances of the concept “planet” is guantitative
instantiation. To provide an evidentiary argument to justify the relationship
between matter, energy and light, as expressed in Einstein’s famous equation,
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KNoWING THAT ...

e Y0

KNOWING HOW ..

Figure 1. llustration of three fundamental kinds of cognition based on
Maccia’s epistemology (drawings by Elizabeth Boling).
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Table 1. Types of "Knowing That " from Maccia's Epistemology

Types of Tutorial Conditions:
“Knowing That” S: Student, Q: Object of Knowing, T: Teacher
Instantial 5 instantiates Q it and only it

1. S believes that Q.

2. S identifies Q as an instance of a kind.

3. S correctly believes Q.

4. Qis a state of affairs.

5. T knows that the above conditions hold in order that S
identify Q.

Theoretical S knows the theory of that Q if and only if

1. S believes that Q.

2. Sis in a position to know that Q.

3. 5 correctly believes that Q.

4. 5 presents an evidentiary argument that complataly
justifies S's belief that Q.

5. S explicates the relevance and fruitfulness of the theory
of that Q.

6. Qs a state of affairs.

7. T knows that the above conditions hold in order that S
knows the theory of that Q.

Criterial S knows the criteria of that Q if and only if

S belisvas that Q.

. 5 ig in a position 1o know that Q.

S correctly believes that Q.

S presents a justificatory argument to establish the

credibility of criteria of that Q.

5 demonstrates the relevancy and fruitfulness of criteria

of that Q.

Q is a state of affairs.

. T knows that the above conditions hold in order that S
knows the criteria of that Q.

Ne n hwps

E =mc?, is an example of theoretical knowing. To be able to justify and establish
the credibility of the value “freedom of speech” is an example of criterial know-
ing. Further examples of “knowing that™ are also provided on the World Wide
Web at URL: htp:/feducation.indiana.edu/ist/faculty/episcomp.html [28].

Qualitative Intelligence: “Knowing That One”

On the other hand, “knowing that one™ is ability to index “none-other.” It is to
discern the specific features that make some entity unique—what sets it apart
from all elsc. For example, in Figure 1, the man recognizes his dog, Rover. In this
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case, he is not seeing his dog as an instance of dog (quantitative instantiation), but
instead as a specific unique dog—namely his dog, Rover.

Maccia concludes that four conditions are necessary for “knowing that one™:
*“1) the state of affairs which is the object of cognition must be epistemically
present; 2) the presence may be perceptual or imagined, but the image must be
accurate and complete; 3) the association between the knower and the known
must be intimate or heightened; and 4) the object of cognition must be a unified
whole with its own identity having characteristics that are discrete™ [22, p. 217].

Steiner further asserts that . . . qualitative structures, if adequate, allow one to
be sensitive to the immediacy of the given, to the unigues; they are pervasive
qualities. Unigues cannot be members of classes, and so no extension is involved;
each is what it is. It cannot even be said of an unique that it is one of a kind"
[27, p. 18].

As can be seen in Table 2, there are three kinds of “knowing that one™:
recognition, acquaintance, and appreciation. An example of recognition is 1o
identify our planet Earth from a wide-angle photograph taken from a satellite,
distinguishing it from other bodies such as our moon, Jupiter, Venus, etc. If
acquainted with the Washingion Monument one could describe its unique
qualities, such as its being an obelisk several hundred feet tall, dedicated as a
memorial to the first US. president, which is located in the center of a cross-
shaped mall, respectively ended by the Lincoln Memoral, the Jefferson
Memorial, the White House, and the Capitol Building in Washington, D.C. As an
example of appreciation, an Olympic diving judge observes and evaluates certain
featres of a given dive such as height of take-off, form during tucks and rwists,
verticality of entry into the water, and lack of splash.

Maccia refers to qualitative intelligence as ability to come to “know that one.™
Further examples of “knowing that one™ are also provided on the Web [28].

Roger Shank has conducted research on the primary role of story relling and
comprehension as a fundamental element of human cognition and intelligence
[29]. Stories are comprised of linguistic symbols (signs) which normally repre-
sent unique states of affairs. To be able to tell and comprehend stories requires
acquaintance and perhaps appreciation in Maccia's epistemology. Knowing a
story is an example of “knowing that one.”

The reader should note thai—like a double-edge sword—the same object of
knowing can be known quantitatively and qualitatively. The man in Figure 1
can cognize that Rover is an instance of dog as well as his own unique pet.
Furthermore, that same object may be relevant to “knowing how™—for example,
knowing how to bathe the dog.

Performative Intelligence: “Knowing How"

The third basic kind of knowing is “knowing how”—io use means to achieve
ends. Know-how requires cognition of particular circumstances, making
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Table 2. Types of "Knowing That One " from Maccia's Epistemology

Types of Tutorial Conditions:
“Knowing That Ong” S: Student, Q: Object of Knowing, T: Teacher
Recognitive S racognizes Q if and only if
1. S believes that Q.
2. 5is completaly justified in believing that Q.
3. No other statemeant or belief defeats S's belief that Q.
4. S selects Q from not Q and not Q from Q.
5. Qs a state of affairs.
6. T knows that the above conditions hold in order that
S recognize Q.
Acquaintive S is acquainted with Q it and only if

1. S recognizes Q.

2. S selects elements [g; ... qj] determinate of Q; and
relations [r ... rj] determinate of Q.

3. Qis a state of affairs.

4. T knows that the above conditions hold in order that
S be acquainted with Q.

Appreciative S appreciates that Q if and only if
1. S is acquainted with Q.
2. 5 selects elemants [g; ... qj] appropriate of Q; and
ralations [r; ... rj] appropriate of Q.
3. Qis a state of affairs.
4. T knows that the above conditions hold in order that
S appreciate that Q.

judgments based on the conditions, and choosing appropriate courses of action
when warranted—all in order to achieve some desired outcome. In short, know-
how is purposeful. “Performative structures are enactions. They allow one to act™
[27, p. 18]. Table 3 provides definitions of six kinds of “knowing how,” or what
Maccia referred to as performative intelligence [23].

Maccia distinguishes among procedures, performances, innovation, and crea-
tion. Procedural knowing is exemplified by knowing a recipe for baking choco-
late chip cookies, whereas performative knowing is illustrated by successfully
making a batch of such cookies. To build a better mousetrap is an instance of
innovarion. To write this article is an example of creation. Further examples are
given on the Web [28].

Tutorial Conditions of Knowing and Al
The reader should note that Maccia was concerned about tutorial conditions of

knowing, as can be seen in Tables 1 to 3. In other words, how could a teacher tell
if a student had achieved one of these kinds of knowing? As indicated above, he
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Table 3. Types of "Knowing How " from Maccia's Epistemology

Typas of
“Knowing How™

Tutorial Conditions:
5: Student, P: Means to Achieve End, T: Teacher

Procedural-
Protocolic

Procedural-
Convantional

Performative-
Protocolic

Parformative-
Conventional

Innovative

Creative

EhwmﬂmprmmmFrfandanlyﬂ

. S iterates the constituents and succession of move-
ments in executing the protocol.

The protocol is the way of performing P.

. P is a single-pathed doing.

T knows that the above conditions hold in order that
S knows the protocol for doing P.

Aon

S knows the convention of P if and only if

1. § iterates the preferred constituents and succession
of movemnents in exacuting P.
Tha convention is a way of parforming P.
. P is a multi-pathed doing.
T knows that the above conditions hold in order that S
knows the convention for doing P.

S knows how to do the protocol P it and only if

1. S has the capacity for doing P.

2. S has the facility for doing P.

3. S smoothly executes P.

4. P is a single-pathed doing.

5. T knows that the above conditions hold for doing P.

homn

S knows how fo do the convention P if and only if

1. S has the capacity for doing P.

2. S has the facility for doing P.

3. S smoothly executes P.

4. P is a multi-pathed doing.

5. T knows that the above conditions hold for doing P.

S knows how o innovate the doing of P if and only if

1. S has the capacity for doing P.

2. S has the facility for doing P.

3. S smoothly executes constituents and succession of
movements into some performance P, when P
includes Pp, and Py, is not equivalent to P.

4. Pis a doing.

S knows how to create the doing P if and only if

1. S has the capacity for doing P.

2. 5 has the facility for doing P.

3. S smoothly executes constituents and succession of
movemants of P(1, 2, ... n) into Pz where P(1, 2, ... n)
are elements of P and Pz is not included in P.

4. Pis a doing.
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was interested in characterizing different kinds of cognitive learning objectives
that went beyond Bloom's taxonomy. These tutorial conditions could also be
used to determine cognitive accomplishments in artificial intelligence as well,
although that was not Maccia’s original intention.

IMPLICATIONS OF MACCIA’S EPISTEMOLOGY
FOR TUTORING SYSTEMS

Without qualitative intelligence, the other kinds of knowing are not grounded
in experience with the world around us. This in turn implies that tutoring systems,
whether natural or artificial, must possess qualitative intelligence as well as
quantitative and performative; otherwise they blindly reason and follow proce-
dures that manipulate symbol systems, images, sounds, icons, and the like with no
cognition of their meaning. Inventive intelligence (innovation and creation) is
also a desirable property of a tutoring system, so it can realize new ways of doing
and develop deeper understandings through disciplined inquiry [28].

Computer Qualitative and Quantitative Knowing

Cognitive scientists have begun to realize the epistemological significance
of “knowing that-one.” Jerome Bruner reviews the evolution in cognitive psy-
chology before discussing the current revolution, which he refers to as cultural
psychology [30]. Bruner views “mind” as a creator of meanings, a special inter-
action through which it both constitutes and is constituted by culture. This is an
entirely different paradigm than the view of mind as information processor, a
view that was previously dominant in cognitive psychology. Bruner believes that
*, . . we shall be able to interpret meanings and meaning-making in a principled
manner only in the degree 1o which we are able to specify the structure and
coherence of the larger contexts in which specific meanings are created and
transmitted. . . . It simply will not do to reject the theoretical centrality of meaning
for psychology on the grounds that it is "vague.’ Its vagueness was in the eye of
yesterday's formalistic logician. We are beyond that now™ [30, pp. 64-65].

The larger context 1o which Bruner refers is culture. When we communicate we
use “signs.” “Signs" are the “stuff”" of communication which are embedded in our
culture. “Signs™ are not limited 1o spoken and written words (linguistic symbols),
but also include icons, gestures, pictorial representations, non-linguistic sound
patierns, smells, touch, facial expressions, expression of emotion, demonstration
by enactment, etc. “Signs” take on meaning for humans through use during
situated action.

It is true that compulers can process “signs” such as key presses and mouse
clicks in the sense of decoding, storing, transmitting, and encoding them. How-
ever, preseni-day computer systems cannot be said to understand the “signs™ they
manipulate. The only “signs” computers do appear to know are the bit pattems
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which represent machine language instructions. These instructions (patterns) are
literally hardwired into a computer. Each instruction is associated with a primitive
action the computer can do, such as move a collection of bits from one place to
another, and perform arithmetic and logical (Boolean) operations on those bit
collections.

While a collection of bits may be an encoded representation of external
“signs,” a computer is literally isolated from the culture in which those “signs™
are given meaning. Computer systems are blind and deaf to the symbol systems,
images, icons, and sounds that they process. Indeed, John Searle concludes,
“. .. the symbols have no meaning; they have no semantic content; they are not
about anything. They have to be specified purely in terms of their formal or
syntactical structure. The zeroes and ones, for example, are just numerals; they
don't even stand for numbers” [31, p. 31].

Searle provides a thought experiment—the Chinese Room example—io illus-
trate this point. In the imaginary Chinese room, someone who undersiands
English but no Chinese follows a rule book (in English) for manipulating these
symbols. When certain Chinese symbols are passed into the room from the
outside, the person follows the rules and passes some other Chinese symbols out
of the room. From owside the room, it might appear that the person (or a
computer program executing these same rules) might have passed the Turing
Test—i.e., the answers to questions posed to the Chinese room were indistin-
guishable from a native Chinese speaker. However, the person inside does not
understand a word of Chinese but is simply following the mles for manipulat-
ing the symbols. Searle concludes that “[ulnderstanding a language, or indeed,
having mental states at all, involves more than just having a bunch of formal
symbols. It mvolves having an interpretation, or a meaning attached to those
symbols™ [31, p. 33].

From another perspective, Roger Shank concludes that “[i]ntelligence, for
machines as well as people, is the telling of the right story at the right time in the
right way. Thus, the key problem in antificial intelligence is the indexing prob-
lem™ [29, p. 242]. Maccia also views indexing as that which distinguishes qualita-
tive from quantitative intelligence: “. . . recognition, acquaintance, and appre-
ciation employ the ostensive operator ‘none-other’. ‘None-other' is an operator
which is indexical not instantial. It does not negate the ‘other” as ‘non-other’.
It separates one from all others™ [italics added, 22, p. 215].

Indexing, then, is something quite different from abstraction (see Tables 1 and
2). When we index something, we discern those features which identify its
unigueness. For example, when a victim of an assault describes the appearance of
the assailant to a police sketch artist, he or she is indexing those features such asa
scar below the left eye, thick eyebrows, receding hairline, etc., which might allow
others to recognize the assailant. As another example, several years ago I absent-
mindedly attempted to unlock the door of someone else’s old car in a campus
parking lot of the same model, color, and year of my own. When my key did not
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work, I realized that this car did not have the right womn spots in the upholstery,
and the rust spots on the body were in the wrong places. Those unique feamres
which indexed my car were missing.

If Maccia, Shank, and Searle are right, then current efforts to design artificially
intelligent tutoring systems capable of understanding human languages will not
succeed unless they can satisfactorily address the grounding problem—grounding
that occurs through qualitative cognition. That is indeed a very significant impli-
cation. From Bruner’s perspective, such systems will never learn the meaning of
the ‘signs’ they manipulate unless they become truly interactive with the culture
in which the signs are embedded. In other words, computer systems will some-
how need to “live in” and experience the culture with us. This appears to be
the very same grounding that concerned Maccia in his discussion of genetic
epistemology of natural intelligence [22, 23].

Computer Performative Knowing

Computers are very good at following protocols such as instructions for com-
putation and logical operations. When such instructions are properly sequenced, a
computer can do complex tasks such as flying airplanes, multivariate statistical
analysis, medical diagnosis, buying and selling of stock, diagnosing faults in
equipment, anti-lock braking to stop a vehicle, eic. To date, computer systems
have evidenced more ability in the domain of performative intelligence, than in
any of the others. This should not be surprising, since computation is an example
of know-how. It is also not surprising that those artificially intelligent tutoring
systems which have been successful usually teach knmow-how (e.g., solving
algebraic equations, diagnosing equipment malfunctions, etc. [6]). See Table 3,
especially protocolic and conventional performance.

Such “applied intelligence”™ is one of the areas where computers can literally
extend the capacity and facility of human know-how. Expert systems and neural
networks are two of the best examples to date. In effect, computers can learn how
to do tasks—including deductive reasoning—that humans perform. Once learned,
the execution of these tasks is normally much faster and more reliable than we
ourselves can do them. Indeed, electronic computers were invented because
human computers were too slow and error prone. Prior to the 1940s “computer™
was the pame of a human occupation. Since then the methods of teaching
electronic computers how-to-do have advanced from low- and high-level
programming languages to extant methodologies such as knowledge engineering
for expert systems and training of neural networks via practice and feedback.

Because computer systems exhibit performative intelligence, we can teach
them to do tasks. It is this very capability that makes it possible to use computers
as an interactive medium for instruction and leaming. It is inferaction which sets
computers systems apart from other media such as books, television, and film.
However, present-day computers literally do not understand the culturally bound
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meanings of the messages which they manipulate during these interactions
because such computers lack gualitative intellipence.

Computer-mediated leaming products—whether they are guided practice exer-
cises, tutorials, simulations, games, hypertext, multimedia, or Web documents—
merely carry out the directives (rules, programs, scripts, mark-ups) from a human
tutor who originally designed the particular instructional or informational system
and its subject matter. A computer system has no idea of the meanings of the
messages (i.e., groups of “signs™) being sent back and forth between the tutor and
students. A computer system 15 a medium which conveys those human messages.

Thas, it is clear that computers can learn or be tanght at least some kinds of
know-how. Further discussion of limitations of computer ability to innovate and
create, which are additional kinds of performative intelligence in Maccia’s epis-
temology (see Table 3), is available on the Web [28].

IMPLICATIONS FROM NEUROLOGICAL RESEARCH
ON GROWTH OF MIND'

The discussion to this point has represented views from epistemology and
cognitive psychology. Recent neurological research on how human brains
develop sheds further light on homan cognition and the challenges faced by
researchers in artificial intelligence. Human genes and their environment interact
in ways that resemble a “dance™ between nature and nurture. Evidence is mount-
ing that human sensory and emotional experience—especially during the first ten
years of life—literally build neural connections in the brain [16, 19-21].

Neuroscientists have found that electrical activity in the brain actually changes
its physical structure. At birth a homan brain contains approximately 100 billion
neurons. As a baby’s brain develops it overproduces nevrons and quadrillions of
connections among them. Then experience with the world begins to prune the
emerging structure. In essence, a child’s behavior and experience influence the
physical structure and formation of her brain [19, 20].

Moreover, since each individual's experience is unique, we each evolve dif-
ferent brain structures. Sensitive periods are critical during early years. If a child’s
brain is deprived of a stimulating environment, brain growth is retarded [21]. It is
no longer a question of nature or nurture, but a “dance™ between our genes and
our experience [16). Starting around the age of ten, the brain begins to destroy the
weakest connections; thus, the remaining structures constitute a unigue brain that
is grown out of experience.

! This discussion is not intended to imply that anificially intelligent systems will need to resemble
human nervous systems. As Minsky has noted [10], there is no reason that such systems will need to be
constructed isomorphic to biological systems, any more than airplanes need to fly in the way binds do.
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Stanley Greenspan provides clinical evidence that “emotion organizes experi-
ence and behavior” [16, p. 23]. He believes that the Western tradition of treat-
ing cognition and emotion separately—going back to the ancient Greeks—has
blinded us to the role of affect in organizing experience. *“We are able to get at our
stored experience so rapidly and reliably because our affective capacity organizes
information in an especially functional and meaningful manner” [16, p. 29].
He suggests that

if . . . information is dual-coded according to its affective and sensory
qualities, then we have a struchiure of circuitry set up in our minds that enables
us to retrieve it readily. . . . Affects enable us to identify phenomena
and objects and to comprehend their function and meaning. Over time
they allow us to form abstract notions of interrelations. . . . Affect, behavior,
and thought must be seen as inexiricable components of intelligence.
For action or thought to have meaning, it must be guided by intent or desire
(i.e., affect). Without affect, both behavior and symbols have no meaning
[16, pp. 30-37].

Maria Montessori realized this important commection between affect and
cognition about 100 years ago when she began to design leaming environ-
ments for young children. Central to her methods was that a child’s natural
curiosity should motivate leamning. Therefore, adulis should structure the
environment in ways which allow that curiosity to be satisfied through a child’s
interaction with the environment. The child in effect is deciding what o
learn, when, and for how long [18]. Montessori was acutely aware of the sen-
sitive periods of childhood which modem neuroscience is documenting
[e.g., 16, 19-21], and developed her curmiculum to match those changing early
needs.

It would appear that the mounting evidence from neuroscience and clinical
psychology has significant implications for both education of human beings as
well as for research in antificial intelligence. Greenspan concludes:

Computers may be able to perform certain cognitive operations, even more
effectively, and certainly faster, than humans. But unless they acquire the
ability to experience and react to emotion, silicon chips will be unable w0
exercise intelligent discrimination. . . . What separates human intelligence
from that of computers, robots, androids, and any other cyber-creatures we
can imagine, is the fact that we possess a nervous system capable of —indeed,
specifically designed for—generating and evaluating affect. . . . Unless and
until we solve the problem of creating living cellular reactivity and affects, as
well as the capacity to abstract pattemns of affects, in an artificial form, no
machine will think in a truly human way [16, pp. 126-127].
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CONCLUSION

In this article I have discussed the limitations of intelligence achievable by
computer systems in 1997. Clearly, such systems exhibit some kinds of know-
how, referred to as performative intelligence in Maccia's epistemology. It is also
patent that such systems can manipulate symbol systems including codified lan-
guage. | am using a computer to write symbols at this very moment, although it
does not understand the meaning of the signs (words and images) that are being
displayed on the monitor or printed with a laser device. It does not possess any
significant degree of qualitative intelligence or quantitative intelligence itself, in
part because it does not have the sensory or emotional capacities through which
we humans derive meaning of the signs used in communication among ourselves.

On March 12, 1997, the birthday of the fictional computer, HAL, was in
actuality celebrated in Urbana, Dlinois [32]. Arthur C. Clarke imagined HAL
when writing his novel, 2001 : A Space Odyssey, some thirty years ago [33]. Can a
real HAL be created? I make no predictions. The tutonial conditions of “knowing
that,” “knowing that one,” and “knowing how™ (listed in Tables 1 to 3) indicate
some of the problems that the artificial intelligence community will likely need
to address.

Artificially intelligent mtoring systems are beyond our reach at this junciure
excepl for those which teach certain kinds of know-how. Therefore, we should
view computers in education largely as media through which a multitude of
teachers can convey their messages. This does not mean that the role of classroom
teachers is diminished. Teachers and students can be empowered by these addi-
tional learning resources.
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