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A COMPARISON OF THREE DECISION MODELS FOR
ADAPTING THE LENGTH OF COMPUTER-BASED
MASTERY TESTS
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ABSTRACT

Three extant methods of adapting the length of computer-based mastery tesis
are described and compared: 1) the sequential probability ratio test (SPRT),
2) Bayesian use of the beta distribution, and 3) adaptive mastery testing based
on item response theory (IRT). The utility of the SPRT has been empirically
demonstrated by Frick [1]. Research has also demonstrated the effectiveness
of use of the beta function in the Minnesota Adaptive Instructional System by
Tennyson et al. [2]. Considerably more empirical research has been con-
ducted on IRT-based approaches [3]. No empirical studies were found in
which these three approaches have been directly compared. As a first step,
computer simulations were und:ﬂak:en. to compare the accuracy and effi-

ciency of these approaches in making mastery and nonmastery decisions.
Results indicated that the IRT-based approach was more accuraie when simu-
lated examinee ability levels were clustered near the cut-off, On the other
hand, when ability levels were more widely dispersed—as would likely be the
case in pre- and posttest situations in mastery learning—all three approaches
were comparably accurate. While the IRT approach tended to be the most
efficient, it is the least practical to implement in typical classroom testing
situations.

OVERVIEW

Making the Future

Alan Kay advocates that “the best way to predict the future is to make
it.”! Concern has grown during the last decade about the quality of American
education. Computers and related information technologies could play a sig-
nificant role in how education is restructured.

! This was the focus of a speech to invited educators and other leaders at the Children's Museum in
Indianapolis in April, 1988,
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The present anthor envisions a future educational system that is carried outina -
very individualized, self-paced and enjoyable manner. All students would have
opportunities to learn, and leamn successfully. They could exercise choice of
learning activities in educational environments designed and continually modified
by their teachers. There would be numerous self-contained learning activities that
do not rely on teachers as the major disseminators of information and feedback.
Instructional technologies such as computer-based tutorials, simulations, hyper-
media and interactive video would be commonplace. Teachers would be very
important, but their roles different—more as guides and confidants rather than
governors, They could spend more time listening to and advising individual
students and less time directing large groups.

To realize this dream, several things must fall into place. First, there must be a
critical mass of effective, but primarily self-contained, learning activities
mediated by appropriate technologies. Second, there must be cducational systems
structured or organized so that learning environments as described above can be
realized. Third, there must be some system of educating educators to gain the
competencies and confidence to work in these new environments.

If instruction is individualized in such a manner, then practical methods of
assessing individual student progress will be needed. The educational practice of
moving cohorts of students through the same learning activities and tests at the
same lime—ihe norm at present—can be discarded. Instead of grading students
where a minority succeed (i.e., receive A’s) and the majority do not, a mastery
learning approach cen be adopted. Mastery learning is not practical with teacher-
led cohorts, but could become the norm in the individualized, technologically
mediated education system envisioned.

This article addresses the issue of how student mastery can be assessed by
computer software for those cognitive leaming objectives amenable to such an
approach. The approaches discussed are mor appropriate for assessing student
competence, for example, in playing a musical instrument, writing an essay, or
riding a bicycle. The approaches are appropriate for many kinds of cognitive
learning objectives iraditionally assessed by paper-and-pencil tests.

Research on three extant methods of compulerized adaptive mastery testing is
first discussed, Each method is then examined in detail. Examples are provided to
illustrate how each decision model actually works.” Next, the three methods are
compared by two Monte Carlo simulation studies. Finally, recommendations ars
made on appropriate contexis for use of these methods of adaptive mastery testing.

% The suthor believes that this level of detail i necassary for wo reasons. Firs1, several rescarchers
have made inadvertent mistakes in comectly carrying out two of the models as indicated in the next
section. Second, these details will help ather researchers to implement correctly and furher study these
adaptive methods. The suthor eriginally wrote this article for his doctoral seminar on methods of
adapling computer-based nstruction and tesis. Students are requirsd to wrile computer simulations 1o
carry outl these and ether methodolagies. The numerical examples are used 1o confirm inivally the

correciness of their computer code.
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Introduction to Computerized Adaptive Mastery Testing

ha?r:dﬁfﬁisﬁﬂaﬁng context a teacher typically needs 1o verify that a student
red an instructional objective normally after the st
. ; n in A udent b
ﬁéga;gteg mllc?ammg dctivities relevant to the objective, If mastery is evident lh:;
udent 15 presumably ready to move on to the n t uni i et
B, o : ext unit of instruction.
it ¥ of the current unit or some kind of remediation is
hﬁ:gen the mastery assessment can be made by a conventional or compuler-
- .hetf-ils ﬁ}sﬂnig ;ﬁ a set of questions appropriate for measuring achievement
uctional objective, a cut-off seore is typically chosen: i
] . and
s:uddcnt s‘le.tt store Is at or above the cut-off, a mastery dacisigrn is n:n:;::r:d Ngn.rE
an h&;w:s [4] and Millman [S_] have demonstrated, however, that this tr'.:ll.ditiﬂnﬂi
method of deciding mastery is particularly error prone when obtained student
sc?qms are near the cut-off and tests are relative] ¥ short (e.g., 12 items or less)

onetheless, if mastery tests can be administered and adequately smre::I‘bjr a
;o:u?puter program, it is pu_ssrh]e o adapt the length of such tests on an individual
m::s,_depcndmg on a particular student’s ongoing performance during the test, If

I¢ I 8 clear trend towards mastery or nonmaster i i :
. : Wards | ¥ early in the test, it
terminzated w1lthﬂut administering all items. When the I.ren}:i is Jess clt;alr T;Eg?:?
tesls are required. The conclusion reached from the shortened test w[il’mnd to
;f;:ﬁ ::;r: :a; reac?:d from a longer, fixed-length conventional test [1, 3)
vings of test-taking time ca i ith 1i s of
i X s I n be achieved with Httle or no loss of
A;he_ deca::mn mode] _dr:ve]oped by Weiss and Kingsbury [3]; referred to as
EruaPE;:d astery Testing (AMT), is based on the item response theory (IRT)
[g]mwm T}::: Novick [ﬂ, and & Bayesian scoring algorithm developed by Owen
: AMT model has excellent predictive validity when
s ¢ compa
]ongiar. ﬂxcdtiangrh tests [3], it is not without its drawbacgs. The AMPF :::d:?
;qu!n?s enfpuicau}r df.riued item parameter information, which is obtained by
mgz&n;;:n:;:;::hnric the item pool 1o a large sample of examinees (approximately
-parameter model). Item parameters are the i
these data before the AMT model can i
¢ aclually be wsed for real-time test]
decisions. For most teachers, this is an unrealistic demand. Consider, for exam ]E:g
:; :In:li]_!ege pmffiisnr who teaches 200 students a year and has dcveloécd a ma.sti:,rj:
or one of the learning units in a course. She would need
gl : 10 collect test data for
iy hree-parameter AMT model could be legitimately
What is required, therefore, is a i i
; s practical alternative decision met
;::;csh—-aumizzslu%g[ not at.;] dccurate or as efficient as the AMT nmdel—-ishim:;f
Instructional decisions concerning master tical
1D on ¥. In an em

;F:S:f?gfa ]1::!3 ﬂ?;-::dicuvc validity of the sequential probability ratio tes {SPPLII;;;,I
am average of approximately twenty test items were required (o
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reach mastery and nonmastery decisions on two different computer-based tests
[1]. ©On each test, items were selected at random from a larger pool and varied
considerably in difficulty levels and discriminatory power. Decision accuracy of
the SPRT was 98 percent, when compared to decisions based on 104al test results
(155 out of 158 SPRT decisions were in agreement with total test resulis). The
expecled accuracy was 95 percent given the a priori o and P error rates used in the
study. The SPRT model was not compared with the AMT model in the Frick study
[1]. since the sample sizes were not adequate for good item parameter estimation,
required by the AMT approach.

The practical advantages of the SPRT decision model are that it is relatively
simple 1o implement in a computer-based testing system, and it requires no prior
data collection on test item parameters—though some would be desirable. An
apparent disadvantage of the model is that the probability of selecting an item that
will be answered correctly by masters is assumed (0 be the same for all items in the
pool; and similarly for nonmasters. Reckase [10], Kingsbury and Weiss [6], and
others question these assumplions—particularly when a rather precise estimate of
an examinee's achievement level is desired. On the other hand, Frick [1]
demonstrated empirically that, even when items vary considerably in difficulty
and discriminatory power, this does not seem to affect the predictive validity of
the SPRT when the model is used conservatively (Le., o and [} levels = 025) with
a typical mastery and nonmastery level (B3 vs .60). These results are analogous Lo
those from studics of the robustness of ANOVA when the assumption of
homogeneity of variances is viclated.

Before a further attempt 1o compare the SPRT and AMT models empirically,
Frick et al. [7] conducted Monte Carlo computer simulations with the a:ier of first
replicating the Kingsbury and Weiss [6] simulations of the two models.” Average
test lengths and decision accuracies in the Frick et al. [7] simulations of the AMT
model closely matched the Kingsbury and Weiss [6] results, when both studies
used the same experimental conditions and ilem parameter data.

However, the results for the SPRT in the Frick et al. simulation were, surpris-
ingly, quite differens than those in the Kingsbury and Weiss study [7]. The
differences were much larger than what could be attributed to sampling error.
After reverifying the correct functioning of the SPRT in Frick's code, further
investigation revealed that the Kingsbury and Weiss formulation of the SPRT
decision model could not be algebraicelly transformed into Wald's original
formulation [11]. Further checking revealed that Reckase’s, Schmitt's, and Frick's
interpretation of Wald's SPRT were consistent and could be algebraically trans-
formed into Wald's original formula [10-13]. Frick et al. [7] were subsequently

? The major reason for repeating Kingsbury and Weiss's simulations was to further validate the
neguracy of the presem author’s computer code for carrying out the rather complex AMT modal.

a S
Some minor differences in resulls were expecied, due to variation atidbulable to sampling error
that is intentfonally part of the simulation.
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able to replicate Kingsbury and Weiss's [6] SPRT simulation results by using their
incorrect SPRT formula. This gave impetus to redo the comparative computer
simulations of the two models, since the SPRT results in the Kingsbury and Weiss
study were clearly invalid.

At the same time, a third decision model was studied when conducting the
simulations with the correct SPRT formulation. Tennyson, Christensen and Park
have attempted to use Bayesian posierior bera distributions for decision making
during instruction (g.g., for deciding how many interrogatory examples (o provide
in & coneept leaming task) [2]. Tennyson et al. [2] based their model on the work
of Novick and Lewis [4] in which a ratio of posterior probabilities is compared to
a loss ratio (disutilities associated with incorreet decisions). Another serendipitous
discovery was made by Frick et al. [7] when verifying the computer code for
calculating areas (probabilities) under various posterior beta distributions.
Posterior probabilities calculated from Frick’s code agreed exactly with those
published by Novick and Lewis ([4], Table 3) and by Schmitt ([12], Appendix B).
However, the values in Table 1 in Tennyson el al. could not be reproduced [Z].
While Tennyson and his associates have empirically demonsirated the effective-
ness of the Minnesota Adaptive Instructional System (MAIS), it is not clear
whether they are indeed using a model based on legitimate Bayesian posterior beta
probability ratios or some other model.

Moreover, Novick and Lewis acknowledge the problem of establishing a basis
for choosing a loss ratio in an educational setting [4]. Frick et al. suggested that the
ratio of posterior beta probabilities can be compared to ratios involving type [ and
II error rates, as did Wald with the SPRT [7, 11]. This would also make possible a
direct comparison of the SPRT, AMT and beta models using the same theoretical
decision error rates.

Each of the models will be described in detail with numerical examples, Then
results of computer simulations will be discussed, comparing the three models in
terms of average test lengths and decision accuracies.

EXPLICATION OF THREE ADAPTIVE
MASTERY TESTING METHODS

The Sequential Probability Ratio Test

Abraham Wald originally developed the sequential probability ratio test
(SPRT). He was finally permitted to publizh his work after World War II, when
the U.S. government had declassified it. In essence, Wald showed that if sampling
is done sequentially and his decision rules are applied after each observation, then
approximately kalf as many observations are required on the average to reach a
decision—when compared to conventional methods in which the sample size is
fixed in advance and a statistical test is applied after all observations are macde
[11]. Furthermore, Wald demonsirated that no more type I and II decision errors
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are expected with the SPRT than with conventional methods. The SPRT has been
widely used as a decision model for quality control in manufactering.

Ferguson may have been one of the first to apply the SPRT to criterion-refer-
enced testing in individually prescribed instruction [14]. Millman, Kingsbury and
Weiss, Reckase, and MeArthur and Chow have explored the SPRT as a decision
mode] for mastery testing [3, 6, 10, 15]. The use of the SPRT in computer-based
testing is apparently not widespread, at least as inferred from the few references
found in the educational and psychological testing literature.

The SPRT model is elegantly simple. Information is collected in order to choose
between two allernatives. In the case of criterion-referenced testing, the choices
normally are mastery and nonmastery, and the information is the observed
sequence of a particular student’s correct and incorrect answers 10 (est questions.
Assuming that each observation can be dicholomously characterized and that
random sampling without replacement occurs, then a probability ratio is computed
after each observation (L.e., administration of a test item):

_ P {1 -Pn) (1)
Pyl - P

where s successes and f failures have been observed up to this point, and where P
is the probability of selecting an item that a master would answer correctly, and Py
is the probability of selecting an item that a nonmaster would answer comectly.
Wald's three decision rules—in the context of mastery testing—would be as
follows:
Rule 1.1. If PR = (1 - fi)a, then stop the test and conclude thal the present

PR

student is a master. (2
Rule 1.2, If PR = (1 - ), then stop the test and conclude that the present
student is a nonmaster, )

Rule 1.3, If Bl - o) < PR < (1 - [yo, then randomly choose another
test item, give it to the present student, recaleulate PR, and apply the three
rules again. 4)

The decision errors a and i are type [ and [T error rates. Alpha is the probability
of misclassifying a true nonmaster as a master, Beta is the probability of misclas-
sifying a true master as a nonmaster.

As an example, suppose that we had previously given our test item pool (0 a
sample of students, and those who scored 75 percent or higher were considered
masters, and the remainder nonmasters. The average test scores for masters and
nonmasiers were found (o be 89 and 46 percent, respectively. Thus, for this test,
the probability of selecting an item that would be answered correctly by a master,
P, i5 estimated o be .89, Similarly, the probability of selecting a question that
would be answered correctly by a nonmaster, Py, is estimated to be 46, Suppose
further that we are willing to make false mastery and nonmastery decisions no
more than & combined 5 percent of the time (& = = .025).
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Mow, suppose thal we have a particular studen! whose mastery sfatus is
unknown, We randomly select an item and give it to the student, who answers it
correctly (s = 1, f=0 at this time). We compute FR:

FR B9%1- B9 89 1.93
T O46Y1- 460 46

We apply the three rules, and rule 1.3 applies, since 0251 - .025) <193 < (1 -
025,025, or 0256 < 1.93 < 39.0. We continue the test by randomly selecting
another question, which this student answers incorrectly (now 5= 1, f= 1.

111 — 8oyl
PR LAY o
A61{1 - 46)t
Again, rule 1.3 is still true, since .394 lies between (0256 and 39.0. Another
question is selected at random, and the siudent also misses this one (s =1, f= 2),
891 - RO
4611 - 46)*
Since .0256 < .0B1 < 39, we continue. The next randomly selected question is also
missed (now s =1, f=3),

FR = 081

B91(1 - .80
A6Y1 - 6P 7

Rule 1.2 is now true, since .016 < 0256, We stop the test and conclude that this
student is a nonmaster, with the expectation that we would be mistaken 2.5 percent
of the time.

A further way of understanding the SPRT is to consider the binomial distribu-
tion when the pepulation proportion is 89 and the sample size is four, as
illustrated in Figure 1. The probability of observing one success in four trials is
approximately .0047, when the underlying proportion of successes is assumed (o
be .89, On the other hand, if the underlying proportion of successes is 46, as
shown in Figure 2, then the probability of observing one success in four trials is
2897, The ratios of these two probabilities is .0047/.2897 = 016, which is the
same ratio as above. In fact, the SPRT is based on the binomial model, but since
the normalization factors in the binomial model are the same in both the numerator
and denominator of the probability ratio for a given number of successes and
failures, those factors cancel each other out in the SPRT.

The number of test items required 1o make a decision will, of course, depend on
a particular student’s performance. As discussed earlier, Frick observed that about
twenty items were required on the average on two different tests [1]. Choice of o
and p levels will also affect test length—higher values will tend to result in shorter
tests, but also with the expectation of more decision errors. Furthermore, if the gap

PR 016
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Theoretical Binowial Distribution
1.00
0.%0
0.80
0.70
0,60
Probabllty 0.5
0,40
0,30
0,20
0,10
0.00 } L
0.0 1.0 2.0 1.0 4.0
Mumber of Successes
Population P = 0,830, with sample size 4

Figure 1. Binomlal distribution withp = 88 and n = 4.

Thearetical Binomial Distribution

1.00
0.9
0.80
0.70
0.60
Probabilty o g

0.40

0,30

0.20

Q.10

0.00 ! —
0.0 1.0 2.0 3.0 4.0

Humbar of Successas

Population P = 0.460, with sample slze 4

Figure 2. Binomial distribution with p = 46 and n = 4,

between the probability of selecting a test question that a master would answer
correctly, compared to a nonmaster, is wider, then tests tend to be shorter—com-
pared to narrower gaps.

Independence of observations is assumed in order to multiply the condi-
tional probabilities in the numerator and denominator of PR. This means that the
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probability of selecting an item that a master would answer correctly should not
change depending on which items have been previously answered, and likewise
for nonmastery. If no feedback is given 1o an examinee during 2 test and ilems are
selected at random without replacement, then violation of this assumption is
unlikely, though it could be empirically tested.

If the mastery and nonmastecy levels are based on empirical results, as implied
in the above example, then average item difficulties are used in updating PR for
masters and nonmasters, respectively. This is where the SPRT has been criticized,
If by chance a number of easy items were selected very early in a test, a premature
and incorrect mastery decision might be rendered, and vice-versa for hard items.
However, Frick contends that the basic issue is the representativeness of the sample
of items chosen from the larger pool, and recommends that & and § be kept very
small to prevent tests from being too short and decrease the likelihood that the
sample will be unrepresentative. Empirical results support this contention [1].

Bayesian Posterior Beta Probabilities

Novick and Lewis explored the use of Bayesian posterior beta distributions in
order to calculate the probability that &, an estimate of an examinee's true
proporlion correct, is greater than or equal to some prespecified cut-off (@),
given an observed number of successes (5) and failures (f) [4]. Although Novick
and Lewis were not concerned with interactively adapting the length of a test
administered by a computer, Tennyson and his associates have atlempied (o do so
with the beta distribution when assessing concept attainment during instruction
(MAIS) [2].

The probability density function for the posterior beta distribution is defined
[12]:

]

beta (® | s,f) = %ﬂwm- o) (%)
This definition of the beta densily assumes that current data are combined with a
flat prior distribution [beta( | 0,0)], and that 5 and f are positive integers greater
than or equal to zero.” As <& varies continuously from zero 10 one the beta
distribution is defined. For example, the posterior beta density when @ = .91 and
three successes and two failures have been observed, given a flat prior distribu-
tion, is:

2+1)
beta(.91 | 3,2) = {i;—l;ri 9131 - 91 =
(6= 5% 4% 3% 2x1 (.753571) (,0081) = 3662355

(3w 2x1) (2x1)

¥ Poaro facterial (01) is defined to be equal o ope in this context.
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However, we are not really interested in the probability density for some value
of & but rather the posterior probability that <» lies in some range [e.g., prob (& =
85)]. This requires numerical integration methods in order to ¢stimate such a
probability. Simpson's rule will be used in the example below (cf,, [12], Appendix
A). In effect, the part of the distribution of interest is cut into many narrow
intervals or slices and the areas of slices are added together to estimate the total
area under that portion of the beta curve. The beta function is defined such that the
entire area under a curve between zero and one is equal o one, which is the
probability that [0.0 = & = 1.0].

For example, suppose that we have observed three successes and two failures
thus far in the test, and we are interested in the probability that & is greater than or
equal to .85, We need to find the area under the beta curve between 85 and 1.
According to Simpson’s rule, we need to divide the range of interest into an even
number of intervals and calculate the value of the beta function [beta (@) [ 3,2] at
the point where each interval begins. Then we weight the first and last probability
density by one, and alternately weight by four and two the intermediate densities.
For example, we will divide the area info ten equally spaced intervals beginning
with .85 and ending with 1.0 (the width of each interval is (1 - .85)/10 = 015}

Beta Simpson
¢ Density = Weight = Product
B350 829 1 829
8635 J08 4 2831
880 589 2 1.178
895 AT4 4 1.897
010 366 2 732
025 267 4 1.068
940 179 2 359
955 106 4 423
870 049 2 Ri
985 013 4 052
1000 000 1 000

Sum of products=  9.468

[Area = Sum x Width/3 = Probability = (9.468) (.015)/3 = .047]

We then sum the products (9.468), multiply the sum by the width of the interval
(:015), and always divide by three. Thus, the probability that [ = .85] is
approximately .047, which is derived from the numerical integration of [beta(d }|
3,2] from & = 8510 & = 1.0.

The entire beta distribution for three successes and two failures is plotted in
Figure 3 (from & = 0 to & = 1 on the horizontal axis, and where the beta density is
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Beta Distribution: beta (§13.2)

15,8
ig.@
Beta
Dersity
6.8
8.9

L P e e R i T i I T |
.8 4.0 8.2 0.3 0.4 65 4.6 0.7 0.8 90 L0
§ (Proportion Correct)
frea between @.550000 and 1.000049 isi @.847

Figure 3. Postericr beta distribution of @ glven three
successes and two failures.

the wertical axis). It can be seen that a very small portion of the area under the
curve lics between .85 and 1.0.

The estimate of a probability when using Simpson's rule will become more
accurate as the width of intervals is decreased (i.c., the number of intervals in
some range is increased). In the author’s experience, interval widths of 001
provide sufficient accuracy for most beta distributions, except extremely skewed
and J-shaped beta distribulions (the latier occurring when either 5 or fis zero). In
the case of J-shaped distributions, the area on the high end of the distribution tends
10 be undercstimated with Simpson’s rule. A simple solution is to caleulate the
complementary area and then subtract from one. For example, suppase we want (o
know the probability that [¢ = .85] when twelve success and zero failures have
been observed. Instead of calculating the area between B3 and 1.0, we calculate
the area between 0.0 and 8499 (the lower end of this distribution), which is the
[prob ( < .85) = .12]. Then subtract that result from one, to get the probability we
really want [prob (P = .85) = 1 -.12 = .88]. We would do the oppasite when the
number of successes is zero. With extremely skewed distributions (¢.g., when s is
quite large and f small, and vice-versa), a similar stralegy can be employed in

which the area under the longer tail is calculated. See Figures 4 and 5.
If we divide the range .85 0 1.0 into 150 intervals , when there are three

successes and two failures , the Bayesian posterior probability that [.85 = fb
= 1.0] is still 047, Thus, the posterior probability that [0.0 s & < .85] is
equal 1o (1.0 — .047) or .953. AL this point, the odds ars .9§3£.M? or about 2010 1
in favor of nonmastery if .85 is our cut-off. There is still a small chance that

e P
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Beta Distribution: beta (Rl12,®
15.0
i
10.8 !
Beta
Density
6.0

/

————— T T T
8.0 #.1 0.2 0.3 &4 9.5 0.6 0.7 9.8 0.0 1.9
§ (Proportion Corract)

Area between 8,000000 and ©.B43533 (s #.129

Figure 4. Posterior beta distribution of @ given twelve
succeses and zero failures.

Beta Distribution: beta (§10.5)

R TR R SR | R L) R R S |
a0 8,4 0.2 8.3 #.4 &5 0.6 0.7 0.8 &8 1.0
§ (Proportion Correct)
Area between ©,B50008 and 1. 000080 is: 0,004

Figure 5. Posterior beta distribution of & glven zero
successes and five failures.

someone—whose true proportion correct for the universe of test items is .85 or

higher—would answer three out of five randomly selecied questions correctly.
The same assumptions required by the SPRT are also necessary for use

of the bera model: independence of observations, random sampling without

replacement, and treatment of items as if they each provide the same amount of
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information. Thus, the beta model can be criticized on the same grounds as the
SPRT. MNonetheless, the beta model is intuitively appealing, since it utilizes a
single cut-off for mastery decisions.

One minor disadvantage of the beta model is that if numerical integration is
done in real time 1o estimate probabilities, significant delays can occur on many
microcomputers. A solution to this problem, if a cut-off is chosen in advance, is to
calculate the areas above the cut-off for all combinations of successes and failures
that could occur and store these results in a disk file, which can be loaded into
memory when the program is run.

Movick and Lewis were interested in prescribing test lengths in order 1o make

mastery and nonmastery decisions while minimizing losses due to false advance-
ments (a) and false retentions (b) [4]. They used the rule:
%:%E:—%*}::% rg- , then advance the student. ©)
Tennyson et al. apparently adopted this rule for deciding the amount of instruction
to provide in terms of the number of interrogatory examples that are answered
correctly in concept learning [2]. For example, in their Table 1 they want to know
whether some student who has answered three out of four questions comectly
should be advanced (i.¢., a mastery decision) when the criterion level is .75 and
the loss ratio (a/b) is .3. If they follow the Movick and Lewis rule, then the
reasoning would be as follows:

IF LR Tﬂ , then advance the student.

prob (@ <.75 | 3,1) ©

We need to perform a numerical integration between .75 and 1.0 for the beta
distribution when three successes and one failure have been observed. The ratio of
the posterior probabilities is 367/.633, or about .58, See Figure 6. Since 58 is
greater than .3, the decision would be to advance the siudent. Tennyson, et al.
repori a beta value of .77 for three out of four correct in their Table 1 [2]. They do
not indicate whether the beta value is a probability density or a probability of a
range of values (i.e., prob[& = .75]). In any case, their values reported in Table 1
do not agree with correct probabilities determined from posterior beta distribu-
tions given the numbers of successes and failures indicated in their table—assum-
ing a flat prior distribution. Moreover, posterior beta probabilities do not depend
on specification of a loss ratio, but only on the prior distribution of beta and the
numbers of successes and failures currently observed. Perhaps Tennyson's
posterior probabilities are based on a prior distribution that is not explicily
specified [2].

Another way of viewing the siluation is that since the numerator and
denominator on the left side of the inequality must sum to ong, we can determine
in advance the ratio of probabilities that is equal w the loss ratio. In this case,

IF
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Figure 6. Posterior beta distribution of @ given three successes and one failure.

.231/,769 is nearly equal to .3. Thus, whenever the posterior probability that [$ =
.75] is greater than 231, we would advance the student.

It seems somewhat puzzling that Tennyson et al. would choose to advance a
student when the odds could be as great as 3.3 to 1 (.769/.231) in favor of
nonmastery! Nonetheless, whatever decision rule they do use does seem o
improve overall learning achievement as measured by a posttest, when compared
io a nonadaptive situation where students are free to control the number of
interrogatory examples they undertake and to another nonadaptive situation where
students are required to do all examples.

As an alternative (o the Novick and Lewis use of loss ratios [4], Frick et al.
suggested that instead of comparing the ratio of the posterior probabilities to
a loss ratio, it appears sensible to compare the probability ratio to (1 - B)a
and to B/(1 - o) as did Wald with the discrete binomial case (7, 11]. In other
words:

i 7.1
:::zt Ez : :': I :'g z (1 = 2) , advance the student; ey
(=] P

IF

prob (@ = $. | 5,f) ] : : (1.2)
, retain the student;
prob (@ < B [ 8,0) - (L—q) ' 1o e SHEER

ELSE select another item at random and repeat this process.  (7.3)

If mastery and nonmastery decisions are made by these rules, then it would be
possible to compare the SPRT and use of the beta distribution with comparable
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type I and II error rates—and likewise for the IRT-bascd adaplive mastery testing
model (AMT) developed by Weiss and Kingsbury.

Use of Item Response Theory and Bayesian
Posterior Theta Distributions

One consideration not explicitly addressed by either the SPRT model or the beta
model is the fact that not all test items designed to measure the same trait or
instructional objective provide equivalent information about examinees. Some
items appear 10 be harder than others, as indicated by a lower proportion of
students who answer them correctly. Some itlems are good predictors of total test
scores and some are not. Further items may turn out (o be poor in that either no one
answers them correctly, or everyone does; or even worse, those who answer
correctly are those who overall are clearly nonmasters (and vice versa). With yet
other items it may be easy to simply guess the correct answer,

These considerations are typically referred to in mental testing theory as item
difficulty, discriminatory power, and chances of guessing {or lower asymptote). In
classical item analysis, estimation of item difficulty and discrimination is heavily
dependenton the sample of examinees who have taken the test, For example, if we
administered the fest only to persons who were masters of the instructional
objective, then the item analysis would reveal that most of the items appear to be
quite easy (low difficulty). On the other hand, if the sample consisted of only
nonmasters, the analysis would reveal that items tended to be guite high in
difficulty.

Such considerations are addressed in item response theory [8]. In cssence, il is
assumed that there is a relationship between the probability of a correct response
to an item and an underlying (or latent) trait, and these item characteristics
somehow enter into this relationship. The “trait™ is what we are trying to indirectly
measure by eliciting responses to test questions (e.g., mastery of a particular
instructional objective). Persons who have more of this trait should be mare likely
to answer & guestion correctly than people who have less of this trait. Furthermore,
some items may be useful for sorting out individuals who are high in this trait, but
these same ftems would tell us practically nothing about people who have little of
the trait we are trying to measure,

The relationship between the probability of a correct response to a test item and
the underlying trait is assumed to follow a particular kind of mathematical func-
tion, called a logistic cumulative density function:

exp(X) ®
1+ exp(X)

{he mathematical constant, € (= 27 828 ) o
somewhat S-shaped in form (called an -:ugml:}, n}n
usually be a range of examinees who are high in

where exp(X) means raising
the Xth power. This function is
a particular test item, there will
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the trait and who all are very likely to answer it correctly (i.e., prob (C | High
Range) =~ 1.0). This is the upper asymptote of the function. On mf_; other hand,
there will usually be a range of examinecs who are low in the trait amli whlnse
probability of a correct response is at or near the chances of guessing (i.e.,
prob(C | Low Range) =~ chances of guessing). This is referred to as th:_ lower
asympiote of the function. In between these two exireme ranges, there will be a
middle range of examinces for whom the probability of 2 correct response will
ideally vary linearly with the so-called amount of the latent trait (X7) they pos-
sess—i.e., prob(C | Middle Range) = mX + B, where m is the slope of the line
(Aprob (AX ) and B is a constant. In other words, those who are at the higher end
of the middle range should have a greater probability of a correct response than
thase who are at the lower end of the middle range. _

This relationship between the probebility of a correct response (o HIP?I‘IIEII]HT
item, R 3, and an underlying trait, 8, is depicted by an item charactenstic curve
(ICC), later referred to as an item response function (IRF) by Lord. The formula
for this function is:

exp (L) 9
prob (R; | 8) =c; + (1 -qlﬁﬁ?{ﬁ
where:
L = 1.7 (8 -bi),
a; = discriminatory power of item i,

b; = difficulty level of item i, and

ci = lower asymptole of item i (chances of guessing).

Theta, 8, can theoretically vary between zero and a very large value !Jul it is
typically scaled as a standardized variable with a mean of zarcland a variance of
one (1.e., z-scores), The parameters aj, b, and ¢y are fixed fnrl a_gwen m:mz I. These
parameiers are estimated from empirical data, having admmns:lcred the item to 4
very large number of examinees. The scaling factor of 1.7 is vsed so that the
logistic ogive will approximate a normal ogive. )

The item discrimination parameter, aj, normally varies betweén near zero and
two. If aj is zero, then the item does not discriminate at all across the spectrum of
8, and the ICC is a flat horizontal line. Such an ilem would be wseless for trying 10
classify or rank individuals, since the probability of a correct response is the same
for everyone. If a; is fairly large, then the middle portion of the ICC is very stcep.
Such an item would be highly discriminating for a very narmow range of thela
values. Everyone else would either be very likely to answer it correctly or very
unlikely to answer it correctly.
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The b parameter represents the difficulty of the item, and typically ranges
between plus and minus three. Harder items have positive by values, easier items
have negative by values, and average difficulty items have near-zero values of b
The effect of the b parameter on the ICC is to slide the whole curve to the right
when &; is positive, and to the left when negative.

The ¢ parameter indicates the lower asymptote of the item, and is frequently
referred to as the “guessing” factor. It can range between zero and one, though
typical values would lie in the .1 to .3 range. The ci parameter has the effect of
compressing the bottom of the ICC vertically upwards.

Another important observation is that when @ is equal to b, then the probability
of a correct response is half-way between the lower asympiote, cj, and one.

In summary, the aj parameter affects how steep the ICC is in the middle portion,
the bj parameter affects the horizontal displacement of the middle portion of the
curve, and the cj parameter affects the vertical displacement of the lower poriion
of the curve. This formulation of an item characieristic curve is known as the
three-parameter model. In order to obtain fairly accurate estimates of the aj, b,
and ¢; parameters, it is recommended that approximately 1000 individuals be
tested with the item pool (cL. [16]).

As an example, suppose we have an item (#3) for which aj is .5, b is -1, and ¢
is .2. The expected probability of a correct response for someone whose theta level
is -1.0 is:

exp{L7(SN(-1)-{-1))

prod (Ca [ -1.0) = 2+ (1 - 2) o S S)-D)-1)) ~ 50
On the other hand, suppose anoiher person's theta level is +2.0:
prob(Cs | +20) = 2+ (1 - 2) LIS @-C1) __ o)

1+exp (L.7(.5) (2 - (-1))

As we should expect, a person with more of the trait being measured is more likely
to answer this question correctly than a person with less. If we were to conlinue
calculating probabilities of a correct response for a wide range of 0 values, and we
plotied these poinis on a graph where the probability value constitules the vertical
axis and the theta value the horizontal axis, then we would see the ilem charac-
teristic curve for item #3, as shown in Figere 7,

1f we do not consider chances of guessing as parl of an ilem characteristic, then
¢ becomes zero for all items, The probability of a correct response for a given © is
then simply the ratio of [exp(L)}(1 + exp(L}}]. This is known as the two-parameter
model, involving difficulty level and discriminatory power only. All lower
asymptotes of ICC’s are zero in this model. A minimum of 500 examinees are
recommended for estimating the a4; parameters for an item pool.

If we consider all items to be equally discriminating and alse do not consider
chances of puessing, this is equivalent lo selting 4j to a constant for all items and
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Figure 7. Theta distribution witha =05, b=-10andc = 0.2,

ci to zero as above, This is known as a one-parameter model, equivalent to the
Rasch model. All lower asymptotes are zero, and the middle portions of each ICC
all have the same slope. The only thing that will differ is the horizontal displace-
ment of the ICC's depending on the values of bi's. A minimum of 200 examinees
is needed (o estimate the b parameters in the one-parameter model.

frem information — As discussed earlier, not all items will provide us with
useful information for all individuals. For example, if we are trying to discriminate
between two or more examinees who have little of the trait being measured, then
highly difficult test items will provide no useful information about these Jow-in-
the-trait individuals, since they would be expected to answer correctly such items
at a chance level only. It would be more desirable to choose items for these
low-in-the-trait individuals which more closely match their ability—if cur goal is
to more precisely estimate the amount of the trait they possess, In other words, we
want 1o find test items which have difficulty levels near the theta levels of the
petsons in question. Moreover, we want to find items which are highly dis-
criminaling and hawve a low probability of being answered correctly by chance for
a range of difficulty levels that match the range of theta values of concern. These
items will provide us with the most amouvnt of information for the individuals in
question—i.e., will allow us 1o sort out these individuals more precisely in terms
of the amount of the trait being measured.

Brown and Weiss incorporate this concept of item information in selecting test
items during adapiive mastery testing (AMT) [17]. Having some current estimate
of an examinee’s 6 level, a computer program searches the pool of remaining
items for the item which has the most information for this value of 8. This

Perrpr—rmrs
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procedure is termed, ‘maximum information search and selection’ (MISS). The
item which will have the most information is the one which has a difficulty level
closely maiching the current estimate of 8, and at the same time has the highest
discriminatory power and lowest probability of being answered comectly by
simply guessing,

Kingsbury and Weiss calculate information for item { for a given value of § in
the AMT model using Birabaum’s formula [6, 8]:

{1 - ¢;)a%a; YLPD? (107
[LPD] + ¢ [LCP]? '

I(8) =

where

ai, bj and ¢j, and L are defined as shove,
d=1.7 = constant scaling factor,

2 ﬁﬁi = logistic probability density, e

and

exp (-L) _ . - 12
LCP = m%{m = logistic cumulative probability. (12)

For cxample, let aj=2, b= 1.5, ¢i = .25, and 8 = 1.75:
L =da; (0 - b)) = 1.7(2)(1.75 - 1.5} = .85

. cxp(B5) 234
[L+exp(85)F [3.34]2

_ exp(=.83) . 427
1 +exp(-.85) 1427

Now we have all the pleces to caleulate I; (0 = 1.75):

J(1.75) = (L=-25) (L7V2(2)%(210)2
Pl 210 + (.25) (20092

Information values for test items will typically range from near zero 10 three or 50
for various values of 8. The item in the example above would give us some
information about a person whose estimated 8 is 1,75, The probabilily of a correct
response to this item is expected (o be about .78, using the ICC with aj = 2, bi =
1.5, i = .25, and 6 = 1.75. See Figure 8.

This part of item response theory, while complex, is fairly straightforward,
assuming we have trustworthy aj, bj, and ¢; parameder estimates. ‘I_‘he. catch is that
the probabilities of a correct response (o an item and the information values of an

210

LCp 299

= 164
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Figure 8, Theta distribution with &8 = 2.0, b= 1.5, and ¢ = 0,25,
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Figure 9. Theta distributicn witha = 1.0, b = 0.0, and ¢ = 0.0,

item vary as a function of 8, the underlying trait that we cannot directly measure
or cbserve for some examinee. How can we estimate the value of 8 for an
individual during an adaptive test?

Bayesian posterior 8 estimation — If we begin a test with a prior estimate of
an examinee’s B level and its variance, and if we give an item (0 an examinee and
know whether it was answered correctly or nof, then we can determine the
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Figure 10. Theta distribution witha = 0.0, b = 1.0, and ¢ = 0.3,

posterior distribution of 8 and the varlance of that distribution by using formulas
developed by Cwen [9]. The posterior estimate of theta given a correct response
to the current item is:

E{ﬁ | C_]- = MD + {[{1 - "-'j}vﬂ IY“'I]IEBUI:XH}’ (13]
where
Me = prior 0 estimate,
Vo = prior variance of 6 estimate,
W =[(1/a; %) + V]2, (14)
Ko (B~ Mol/ W (15)
1
gau(X) = I[EI:I"*] [exp(~(X2)/ 2)], (16)
Y =g+ (1 =) [logist (-1.7X)] , an
and
exp (Z) (18)

logist(Z) = Tvrexp(2)

The estimate of 6 given an incorrect response to item i is defined:
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[Vo/W] [gau(X) (19)
En { logist(1.7X) } ‘

Although these formulas for Bayesian updating of the estimate of 0 are compli-
cated, the principle is simple: If the éxaminee correcily answers a question, then
the prior estimate of O is incremented by an amount that is related to charac-
teristics of the item and to the prior variance of 8. If the examinec misses the
question, then the prior estimate of B is decremented.

On the other hand, the Bayesian updating of the variance of 8 is multiplicative,
not additive or subtractive. The variznce of 8 will tend to decrease as more items
are administered, The estimate of the variance of B, given a correct response is
defined:

(! -elgau®)] (20)

ve|O=Voli - {El-r:il l[}gaucxn} % ’
where:
U=1+[1/(a; V). (21)
The estimate of the 6 variance, given an incorrect response is defined:
_guX) @2)

Another observation is that the “guessing” factor, ¢, enters into the updating
process of both 0 and its variance when a question is answered correctly, but the
ci-related terms drop out if the question is answered incorrectly.

Finally, the posterior estimate of & and its variance become the new priors after
another test item is administered. Then new posterior cstimates of O and its
variance are estimated, and so on, uniil the posterior variance of 8 becomes small
enough. How small that needs to be is discussed next.

An example of the AMT in operation — Finally, we have all the pieces in order
to show how the AMT works. We will assume that we have a 100-item test that
has been vsed with 1000 examinees and we have good estimates of the aj, by, and
¢i paramelers. Suppose initially we believe that a particular person has an average
amount of the trait we are attempting to measure with our test items. In this case,
we set our prior estimate of @ to zero (i.e., My = 0), and prior variance to one (i.e.,
Vy = 1). We next calculate the information that each item in the pool has when @
is zero, We find that fao (0.0) = 1.927 to be higher than any other ilem, so we
administer this item for which ez = 2.0, bag = (L0, and cz0 = 0.2. The student in
question answers item #20 correctly.
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Since a correct response was given, we need to evaluate formulas (13) and (20)
in order 1o estimate the posterior value of 8 and its variance. To use these formulas
we first need to compute the necessary pieces from (14) through (18):

W = [1/22 + 1]12 = [1.25]/2 ~ 1.1180
X=(0- 0y1.118=0.0
gau (0L0) = (3989) (exp (- (0%)/2)) ~ 3989
logist (~1.7(0.0)) = [exp(-1.7(0)))/[1 + exp(=1.7(0))] = 0.5
Y=2+8(5=06
U=1+[1@* (1)) =135
Now we can estimate the posterior B and its variance:

E@|C)=0+ {{{.8]{1}31.28}[.3989]} w (14757
(8K:3989)
[.B){.3989) & 3
vca|C}-{1}1—{ 175 ] = - 7737

We can now form a Bayesian confidence interval. For example, if we use a 95
percent confidence interval, then:

[B(8) - L.96(V(8)"2)] = 8 s [E(8) + 1.96(V(8)")], (23)
Qor
[4757 - 1.96(.7737% )] = 0 = [4757 + 1.96(.7737"2)] .

Thus, the probability is .95 that [-1.248 = 8 = +2.20].

If we decide to continue the test, we now set our prior estimate of 8 to 4757
(i.e., My = .4757), and prior variance 0 .7737 (i.e., Vo = .7737). We next calculate
the information that each item in the pool has when 8 is 4757, We find that
[73(0.4757) = 1.523] to be higher than any other item, so we administer this item
for which a3 = 2.0, b3 = 0.5, and ¢3 = 0.3. The student in question answers item #3
incorrectly.

Since an incorreci response was given, we need to evaluate formulas {19) and
(22) in order to estimate the posterior value of 6 and its variance. To use these
formulas we first need to compute the necessary picces from (14) through (18):

W= [1/22 +.7737]% = [1.0236]": = 1.0118
X = (0.5 - 0.4757)/1.0118 ~ 0.0240
gau (0.0240) = (:3989)(exp(~(0.0240%)/ 2)) ~ 0.3988
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U=1+ [ {24.7737))) = 1.323

~ [exp(1.7(0.0240))]
[1 + exp(1.7(0.0240))]

MNow we can estimate the posterior 8 and its variance:
[.7737/ 1.0118][.3988]

logist(1.7(0.0240)) = - 05102

E(6 ] -C) = 0.4757 - s ~-0122
(:3988) S 0240
51
V(B |-C)=[T737TY1 - { 133 } 5102 o (0.4049

We can now form a Bayesian confidence interval. If we use a 95 percent con-
fidence interval, then:

[- 0122 - 1.96(.4049"2 )] < 6 = [- 0.122 + 1.96(.4049%2 )]

Thus, the probability is .95 that [-1.37 = 6 s +1.13]. As can be seen, computation
by hand is tedious and can be error prone. In particular, errors due to rounding can
creep in and cause divergence from what is obtained if all computations are
maén:ained 1o the highest degree of accuracy a computational device is capable
of.

Doing the AMT model by hand computation does reveal the importance of
accurate item parameter estimates, since minor variations can dramatically effect
these computations that frequently deal with relatively small numbers. And minor
differences in new posterior 6 estimates can make a difference in which item is
selected next, according to its information value. In effect, small discrepancies can
quickly magnify themselves into rather large differences, since the model conlains
many erithmetic multiplications and divisions.

The AMT stopping rule — We have still not addressed the basis for ending a
mastery test under the AMT model and reaching a decision. Weiss and Kingsbury
recommend using a test response function (more commonly referred 10 as a test
characteristic curve, TCC) as follows [3]:

L 24
prob(C; [ 8) = [Ii [ei+ (1 - ) l—fﬁ% l}fﬂ i

1 have also observed discrepancies when the AMT model is coded the same way in two different
high-level languages on 8 VAX minicomputer, and then run on the same data set (i.e., same jlem poal,
same flem parametess, and jdentical comest or ineorrect responses lo items selected). Due 10
differences in the maximum precision of arithmetic in the two languages, on cecasion afier about 10 of
12 items a different item will be picked with the MISS procedure in one of the code versions. Al'ltl'lﬂ‘lal
point the sequence, of tems selecied by the MISS procedure will be different in the two code versions
for that panbcular examinee's dala sel.
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where n = number of items in the total pool, and L = 1.7a; (8 - &), as before.

The TCC can be seen as an average of all the ICC’s (see formula (9)). Normally,
we think of a mastery level in terms of a percent of correct answers (e.g., .85).
However, in the AMT we are dealing with a B metric. The problem is io convert a
proportion correct as a mastery level to a corresponding theta cut-off, 6. This can
be accomplished through use of the TCC by simply going wp the TCC curve until
a point is reached where the probability of a correct response is equal to the
proportion correct wanted for the mastery level.

Once Bc is determined, then after each test item s administered and a new
posterior B and variance estimate is calculated, we simply check to see whether or
not the confidence interval contains 8.

If [E(8) - 1.96(V(6)"2)] > 8. then choose mastery. (25.1)

If [E(8) + 1.96(V(8)V2)] < 6, then choose nonmastery. (25.2)

That is, if the confidence interval does not contain B¢, then we stop the test and
choose mastery if the lower bound of the interval is above B¢, or choose non-
mastery if the upper bound is below 8.

If [E(® - 1.96(V(8)"2)] < 6. < [E(8)
+ 1.96(V(6)12], then continue testing. (25.3)

Thus, if the confidence interval does contain 8 we continue the test by using the
MISS technique to choose the next item.

Note that choosing a Bayesian confidence interval of .95 is the same as
setting e = B = .025 (see above discussion of the SPRT and posterior beta
distribution).

Summary of the AMT model — The adaptive mastery testing (AMT) model
is clearly the most complex of the three discussed here, and also has the
requirement that a large number of examinees must take the test in advance in
order to estimate item parameters. On the other hand, the SPRT and beta models
treat items as if each provides the same amount of information about every
examinee.

In the AMT model items are not selected at random as they are in the SPRT and
beta models. Rather, in the AMT model the item selected next is the one which is
predicted to provide the most amount of information about a particular examinee,
given an estimate of thai person’s 0 level. What this means in practice is that the
next item chosen is one that has a difficulty level matching as closely as possible
to a person's @ level, and which at the same time discriminates best in that area of
B, and which has the least chance of being answered correcily by guessing. The
AMT model does more than adapt the length of a mastery test; it also adapts in
terms of what items are chosen. These features would make this approach seem 1o
be most desirable.
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Three other features of the AMT are worth discussing;

1. In order to effectively take advantage of the MISS procedure, a rather large
item poal is required which represents a wide range of difficulty levels, If a
test continues to a point where there are no remaining items that closely
match the current estimate of a person’s 8 level, then less than optimal items
will be chosen subsequently. This means that Bayesian updates to 8 and its
variance will not be as dramatic as could be, and & test could become very
long before a decision can be reached at the desired level of confidence.

2. Theta can alternatively be estimated by maximum likelihood methods as
s00n 4§ an examinee has answered al least one question right and one
wrong. Since the AMT model [s being compared to two other Bayesian
models here, only Bayesian estimation of 0 is considered.

3. Computerized adaptive testing (CAT) includes the AMT procedures dis-
cussed here. Instead of just making mastery or nonmastery decisions, CAT
can continue until § estimates are precise enough for whatever decisions
need to be made (e.g., grade classifications) [3].

MONTE CARLO STUDIES

Comparative Computer Simulations of the Three Models

Computer simulations of the sequential probability ratio test (SPRT), the beta
model, and the adaptive mastery testing (AMT) model were conducted to compare
efficiency and decision accuracy. Efficiency is measured by the average number
of test ilems required 10 reach a mastery or nonmastery decision under a given set
of experimental conditions. Accuracy is measured by the correctness of the
decisions under those conditions—i.e., the percent of decisions in each model
which agree with actual or “ known' mastery status,

Since Kingsbury and Weiss did not use Wald's SPRT formulation [6], it was
further desirable to replicate initially their simulation with the results for the
correct SPRT model. No differences were expected in the AMT results, when
comparing the present study with that of Kingsbury and Weiss [6], other than
those attributable to sampling error. Furthermore, Kingsbury and Weiss did not
compare the beta model to the SFRT and AMT [6]. In many respects, the beta
mode] is more directly comparable 1o the AMT model than the SPRT, due to the
basic problem of choosing both a mastery and nonmastery level a priorf in the
SPRT. The wider the gap between the two levels, the shorter tests tend to be, all
other things equal. Ideally, these two levels would be chosen on the basis of prior
empirical estimates. Kingsbury and Weiss choose .7 for Py and .5 for Py [6].
While it is obvious that .6 is the mid-point, .8 vs .4 could have been chosen as well,
or .9 vs .3, etc. The average test length in the SPRT will be affected by the choice
of mastery and nonmastery levels.
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Methods — In the present study, the same experimental conditions were used
as those by Kingsbury and Weiss in their aj-, bi-, and ci-varigble pool of 100 items.
The same item parameters were also used in the present study (see [18]). The
simulations were performed with three different maximum test lengths (10, 25,
and 50 items). The test characteristic curve in the AMT model indicated that if the
e mastery level is zero, based on these 100 items, this comresponds 1o 60 percent
correct on the whole test. Therefore, in both the beta model and the SPRT, if a
simules’s “true” score was greater than or equal 10 .60, then he was determined 1o
be an actual master, otherwise a nonmaster, In the AMT model, if the “true” @
level was greater than or equal to Be (=0, he was considered an actual master.

The “true” € value for each of the 500 simulees was chosen from a normal
distribution with a mean of zero and variance of one. In the AMT model, the prior
estimate of B was set to zero and variance (o one at the beginning of each
simulated test. For each simulee, a subset of the 100 ilems was chosen at random
1o create an item pool with » items, where n was either 10, 25 or 50 depending on
the experimental condition. Test items actually administered to a simulee were
drawn from his particular subset, not from the entire pool of 100 items.

The method of selecting a test item differed depending on the decision model.
In the AMT model, the item selected next was the one in the pool with the most
information for the current estimate of the simulee’s 8 level (MISS procedurc). On
the other hand, in the SPRT and beta models items were selected at random. No
item in a given simulee’s pool was administered twice within that model, but
could have been “answered” up io three times (usually on different occasions),
depending on if or when it was selected by one or more of the other decision
models,

Simulation of examinee responses to test items — The method of determining
whether or not a simulee answered & particular question correctly was, however,
the same in all three models. The probability of & correct response 1o the iem
chosen in each mode] was calculated from the item characteristic curve, given the
“true” 8 value selected in advance for the particular simulee. A number between
zero and one was then randomly chosen from a flat distribution. If this random
number was less than or equal to the expected probability of a correct response o
the item by the simulee, then the question was taken as being answered correctly.
If the random number was greater than the ICC-derived probability value, then it
was considered as being answered inmrlec[i}'.?'l']ﬂs method of generating correct
and incorrect answers is consistent with that used by Kingsbury and Weiss and is
also consistent with the {tem response theoretic model that AMT is based upon

7 This may surprise the reader, since initially it may s¢em backwards. The random number is drvwn
from a flat distribution between zero and one, where each value has an equal chance of being selecied.
For example, if the probability of a correct tesponse is .75, then in the long run 75 percent of the
numbers we randomly plek from the fat distribution should be between { and .75, Thus, this decision
logic does simulate eorrectly the probahility of a comrect respanse.
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[6]. Whether it is consistent with reality depends on the nature of the trait being
measured, a question that can be answered empirically (e.g., see [3]).

Onee it was determined that each selected question in each model was answered
correctly or not, the total number of successes or failures was incremented accord-
ingly for that model, and then the decision rules in that model were applied. For
the SPRT, formula (1) and Wald's three rules were used ((2) 1o (4)). In the beta
model, the probability that [$ = .60] was calculated using Simpson’'s rule and the
beta density function (5), and decision rules (7.1) to (7.3). In the AMT model,
formulas (13) and (20) were used if the question was answered correctly, and (19)
and (22} if incorrect, to obtain posterior estimaies of the simulee’s 8 value and
variance. A .95 confidence interval was then generated using those new posterior
values (formula (23)), and decision rules (25.1) through (25.3) were applied.

Decision error rates — Kingsbury and Weiss used a .95 confidence interval
for mastery decisions in the AMT, but set « and P to .1 in the SPRT [6]. It is
unclear why they chose to do this, since an .80 confidence interval is directly
comparable (1 - a - [§). To make the theoretical decision error rates identical, o
and f were set to .025 for both the SPRT and beta models in the present simula-
tion, and a 95 percent confidence interval was used with the AMT model.

Determination of decision accuracies — If a mastery or nonmastery decision
was reached by one of the madels, then the number of items administered to that
simulee was stored along with the accuracy of the decision, Decision accuracy
was determined as follows: If the true @ for a simulee was greater than or equal io
zero (B) and a mastery decision was reached by that particular model, this was
counted as a “hit,” If the true @ was less than 8. and a nonmastery decision was
reached by the model, this was also counted as a hit. Otherwise, it was counted as
a “miss.”

Once a decision was reached by a model for a particular simulee, it dropped out
of contention until the remaining models reached decisions or that particular
simulee’s item pool was cxhausted. If it happened that a decision model could not
reach a mastery or nonmastery decision when a pool wes exhausted, then a
decision was forced, realizing of course that this will cause more decision errors
than expected by the theoretical a priori rates, This was apparently done by
Kingsbury and Weiss (o study the effect of maximum test length on decision
accuracy [6]. In the case of pool exhaustion during both the SPRT and beta
models, if the proportion of questions answered correcily was greater than or
equal io .6, a mastery decision was rendered, otherwise nonmastery. Similarly, if
the pool were exhavsted during the AMT model and if the current estimate of 0
was greater than or equal to zero (8c), mastery was concluded, otherwise non-
mastery. These decisions were then compared 1o the “true” state of affairs, as
described above, and the number of hits or misses was incremented accordingly
for each model.
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This entire process was repeated for a total of 500 simulated tests each for
maximum test lengths of 10, 25, and 50 items. The process was carried out by a
program run on @ VAX minicomputer. Al the end of the simulation for a given test
length, the average number of items required in cach model was calculated as well
as the percent of hits.

In summary, the present simulation study parallels that done by Kingsbury and
Weiss with the following differences [6]:

1. The correct SPRT formula was used here.

2. The beta model was also compared to the SPRT and AMT.

3. Alpha and beta decision error rates were set to ,025 in both the SPRT and
beta models.

4. An SPRT model with Pm = .8 and Py = 4 was also included.

Results

First experiment — Results from the first experiment are reported in Table 1.
It should be noted that results from Kingsbury and Weiss study [6] for the AMT
model are also reported in the fifth column of Table 1 for purposes of comparison
with the present AMT results, Due to random variation intentionally built into the
simulations as described above, results do vary from experiment to experiment,
but the pattern of results is consistent,

Table 1. Efficiency and Accuracy of the Sequentlal Probability Fatio Test
(SPRT), Beta, and Adaptive Mastery Testing (AMT) Models Using
[tern Parameters from Kingsbury and Weiss (1983).

Distribution of True 8's: Standard Normal (Mean = 0, Variance = 1)

AMT
SPRT® SPAT® Bata AMT (1983

Maximum Test Length = 10, n = 500

Average test length (Efficiency) 8.58 9.98 840 BS5 873
Percent of correct dacisions 750 742 75.4 8.0 T28
(Accuracy)
Maximum Test Length = 25, n = 500
Average test length (Efficlency) 1365 2234 2007 1678 1635
Parcent of correct decisions TH.6 81.8 836 BS4 BEE
(Accuracy)

Maximum Test Length = 50, n = 500
Avarage test length (Efficiency) 1653 3374 3307 2238 2338
Percent of correct decisions 824 86.2 868 916 E94

{Accuracy)

*Pn=.8 Pre.d
P =T, Pam.5
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In each of the three maximuem test length conditions, the SPRT (.8 vs .4) was the
most efficient model. On the other hand, the SPRT (.7 vs .5) was the least efficient
of the models. This apparently contradictory finding is a result of the choice of
mastery and nonmastery levels in the SPRT, since wider differences in the two
levels tend 1o reduce the number of items needed to reach a decision. It also
illustrates the imporiance of the justification of the choice of levels, and whenever
possible setting levels based on prior test results.

In addition, when comparing the two SPRT models, sccuracy is relatively
comparable, with a possible exception in the fifty-item tests where the accuracy
was somewhat lower in the SPRT (.4 vs .8) model, A very important cbservation,
howewver, is that the decision error rates for all models and all test lengths here
were greater than the expected five percent. Both SPRT models had error rates of
about 25 percent when the maximum test length was constrained to be ten items,
about 20 percent when length was constrained to twenty-five items, and about 15
percent for the fifty-item tests. The reason for this was the relatively large propor-
tion of simulees with true 0 values near 8, which in the proportion correct metric
is half-way between the mastery and nonmastery levels in the SPRT. Wald
referred to this gap as the ‘zone of indifference,’ since the SPRT performs least
optimally for samples wilh proportions of successes near the mid-point of the
zone, both in terms of sample size and decision error rates [11].

The AMT model was more efficient than the beta and SPRT (.5 vs .7) models in
all three test length condilions. The latter iwo models resulted in very comparable
average test lengths. When the item pool subsets were constrained to fifty items,
the AMT required about ten fewer ilems on the average to reach a decision, The
AMT tended to be more accurate than any of the other models across all three test
length conditions.

When the maximum test length was constrained (o ten ilems, most of the time
decisions were forced in all of the models, meaning that this would tend to push
the decision error rate higher than that set @ priori, Decision accuracies for all
models tended to increase, respectively, in the twenty-five- and fifiy-item tests. In
the latter two conditions there were less forced decisions, with the highest decision
accuracies in the fifty-item maximum condition. Still, however, the accuracies fell
short of the expected 95 percent. Most likely this was due to the fact that there
were a number of occasions where a simulee’s item pool was exhausted and a
decision was forced. The relatively high error rate (20% to 30%) in the ten-item
maximum condition illustrates the problem with short tests that has been
demonstrated theoretically by Novick and Lewis [4] and Millman [3].

The reader is again reminded that these resuls represent a severe test of the
three models, since a large number of true © levels were very near to the mastery
cut-off point.

To further investigate the effects of the distribution of true & values, the
simulation was repeated where the mean was zero and the variance was 10—a
much flatter normal distribution. In this case, about 95 percent of the B values are
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Table 2. Efficlency and Accuracy of the Sequential Probabillity Ratio Test
(SPRT), Beta, and Adaptive Mastery Testing (AMT) Modals Using Item
Paramsters from Kingsbury and Welss {1983),

Distribution of True 8's: Normal (Mean = 0, Varlance = 10}
SPRT® SPART® Beta AMT

Maximum Test Length = 10, 1 = 500
Average test length (Efficiency) 7.36 8.89 B.23 6.90
Percent of correct decisions (Accuracy) 88.0 BB.4 Bg.2 80.2

Maximum Test Length = 25, n = 500
Average test length (Efficiency) 8.80 1672 1331 870
Percent of comect decislons (Accuracy) 80.0 93.8 828 858

Maximum Test Length = 50, n = 500
Average test length (Efficlency) 10,16 2183 1911 107
Percant of correct declsions (Accuracy) g2.4 94.8 946  96.0

'Pm-.ﬂlunnn.dn
hpm-.?,Pnl.s

expected to occur between -6.2 and +6.2, compared 1o the first simulation in
which 95 percent of the values were in the -1.96 to +1.96 range. All other
conditions were the same as in the first simulation,

In Table 2 it can be seen that the overall effect of the greater spread of true 6
values s to decrease average test lengths in all models and conditions, and to
generally increase decision accuracy. In particular, in the fifty-item maximum test
length condition the decision error rates are around 5 percent, the expected error
rate specified in all models. One exception was the SPRT (4 vs .8), which resulted
in slightly higher than expected error rates.

The AMT model tended to be the most efficient and the most accurate over all
conditions in the second simulation, A notable exception was in the fifty-item
pools where the SPRT (.4 vs .8) resulted in slightly shorter tesis. A further trend is
that the beta model tended 1o be slightly more efficient than the SPRT (.5 vs .7)
model with nearly equivalent accuracy levels.

Discussion

Perhaps the most important result is the observation of higher decision error
rates when examinee @ levels are near the mastery cut-off, as evident from the first
simulation. While this is not surprising, it does remind us of the severity of the
problem when attempting fo make mastery classifications under these conditions
and when tests are relatively shor,

On the other hand, when B levels are further away from the cut-off, both
decision accuracy and efficiency improve, as indicated in the second simulation.
When the maximum test length was constrained to fifty-item pools, all models
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made fairly accurate decisions, though some were clearly more efficient than
others.

It is clear that decision accuracy and efficiency are dependent on the shape and
location of the distribution of true scores in the sample of examinees being tested.
In a mastery learning context where students are pre- and postiested on instruc-
tional units, we would expect (o find a flatter or a bi-modal distribution of true
scores, as was the case, for example, in the Frick study [1],3 Although the mastery
and nonmastery levels were different in that study (.85 vs .6), decision accuracy
was very high (about 98%) with average test lengths of about twenty items. There
was no constraint on the maximum test length in the Frick study other than the
actual sizes of the two test ilem pools, and only one forced decision was made in
that study [1]. Those results are fairly comparable o the second simulation in the
present study when maximum test length was constrained at fifty items, where the
SPRT (.7 vs .5) and beta models resulted in test lengths of about twenty ilems,
with decision accuracies at nearly 95 percent. Moreover, Weiss and Kingsbury
reported that a validation study of the AMT with variable length tests of actual
students was consistent with previous Monte Carlo simulation results with the
AMT [3, 6],

Since there is consistency between validation studies such as Frick [1] and
Weiss and Kingsbury [3] and the present simulation results, which replicate in part
the Kingsbury and Weiss simulation [6], the credibility and generalizability of the
results presented here are enhanced considerably.

Which Model Is Best?

It is noteworthy that all three models—ihe sequential probability ratio test
(SPRT), the beta model, and the adaptive masiery testing model (AMT}—tend 1o
provide fairly accurate predictions of mastery when used conservatively and when
no consiraints are placed on maximum test length. The differences lie in effi-
ciency. Since the AMT model selects items according to the amount of informa-
tion they provide, it is more adaptive than the SPRT and beta models, where
random selection of items is assumed. Also, the AMT model is generally more
efficient than the SPRT and beta models. The AMT model would appear, there-
fore, 10 be overall the best of the three.

On the other hand, the analogy of using a cannon to kill 2 mosquito is apt. In
many classroom computer-based testing situations, the SPRT and beta models (fly
swatters—to continue the analogy)), would appear to be quite sufficient. The SPRT
is the most practical of the three in that it is the least computationally complex,
thus requiring less CPU time for rendering decisions. The SPRT is best used when
test jlem pools have been previously wsed with the kinds of examinees for whom

© That study was not a simulation, but a validation of the SPRT with college studenis in classroom
Lesting situations.
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the tests are intended in order to empirically establish the mastery and nonmastery
levels required by that model. Furthermore, if small decision error rates are used,
the problem of uneven item representation is minimized,

The beta model is also attractive in that its computational overhead is relatively
small, particularly if calculations of posterior probabilities are done in advance for
a given cut-off with all combinations of numbers of successes and failures.
Furthermore, the bela model can be more efficient than the SPRT in terms of
average test length, depending on the distribution of examinee achievement levels
and what SPRT mastery and nonmastery levels are used. The beta model also has
the same drawback as the SPRT in that all items are treated as if each provides an
equivalent amount of information about student mastery, The beta model can be
particularly error prone if a student happens to get off (o a poor start, since a 1est
will end if he or she misses the first few ilems—using typical mastery levels, even
when o and p are quite small. A simple solution is to wait until five or ten ilems
have been answered before applying the beta model.

If & teacher is concerned that tests may be too short and/or students perceive an
unfairness about the situation, & simple remedy is to establish a minimum test
length that is satisfactory and then begin applying the SPRT or bela decision
models from that point onwards (e.g., after 20 items have been answered),

It is clear that the SPRT and beta models are more practical than the AMT
model for typical teacher-made mastery iests that are computer-administered. In
addition, the consequences of occasional decision errors are probably not that
severe for this kind of routine testing before and after student completion of a
module or unit.

On the other hand, if & curriculum is standardized to the extent that a large
number of students will be taking the same tests, then the AMT approach has more
merit, First, in this kind of situation the problem of gathering data on 200, 500 or
1000 examinces to estimate item parameters for the one-, two-, or three-parameter
IRT models becomes a less serious obstacle. Second, estimates of student achieve-
ment levels can be made more precise by choice of test items matching their
ability levels. The AMT approach is definitely preferable if the goal of testing is
to rank examinees along some continuum, rather than simply to classify as masters
O nonmasters.

Finally, if the consequences of incorrecl assessment decisions are severe, then it
is advisable to collect as much good information as possible about an examinee.
The goal of adapting the length of such a test is of little concern. Rather, the focus
is on making & decision with the best information possible.

THE FUTURE

Al present the notion of computerized adaptive tests may seem far-fetched and
perhaps esoteric for the public schools. Clearly, many obstacles must be overcome
to realize the kind of future educational system envisioned at the beginning of this
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article. Educators are not likely to use adaptive tests unless they understand how
such tests work and that they trust the decisions reached by such methods, If this
article has furthered that aim, then it has achieved its purpose.
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