JOURNAL OF
EDUCATIONAL
COMPUTING
RESEARCH

Edired by:
Dr. Robert H. Seidman

Volume 8, Number 2 — 1992

Computerized Adaptive Mastery
Tests as Expert Systems

Theodore W, Frick

Baywood Publishing Company, Inc.
26 Austin Avenue, Box 337
Amityville, NY 11701
Call (516) 691-1270 « Fax (516) 691-1770
= Orders only —call toll-free (800) 638-7819

J. EDUCATIONAL COMPUTING RESEARCH, Vol. 8(2) 187-213, 1992

COMPUTERIZED ADAPTIVE MASTERY TESTS
AS EXPERT SYSTEMS*

THEODORE W. FRICK
Indiana University

ABSTRACT

Expert systems can be used to aid decision making. A computerized adaptive
test is one kind of expert system, though not commonly recognized as such.

A new approach, termed 'EXSPRT, was devised that combines uncertain
inference in expert sysiems with sequential probability ratio test stopping
rules. Two versions of EXSPRT were developed, one with random selection
of items (EXSPRT-R) and one with intelligent selection (EXSPRT-I). Two
empirical studies were conducted in which these two new methods were
compared to the traditional SPRT and to an adaptive mastery testing (AMT)
approach based on item response theory (IRT). The EXSPRT-I tended to be
more efficient than the AMT, EXSPRT-R and SPRT models in terms of
average test lengths. Although further research is needed, the EXSPRT-I
initially appears to be a strong alternative to both IRT- and SPRT-based
adaptive tests for making categorical decisions about examinee mastery of
single instructional objectives. The EXSPRT-1 is clearly less complex than
IRT, both conceptually and mathematically. It also appears to.require many
fewer examinees to establish empirically a rule base when compared to the
large numbers required to estimate parameters for item response functions in
the IRT model.

THEORETICAL ISSUES

Second-Generation Expert Systems

One of the more practical results from extant research in artificial intelligence is
the application of expert systems reasoning to aid in decision making or problem
solving. Expert systems have been developed, for example, to help physicians
identify types of bacterial infections, to aid investor decisions on buying and
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187
© 1992, Baywood Publishing Co., Inc.



188 / FRICK

selling stock, for aid in assembling components of computer systems, for
making decisions about where to drill for oil, for assisting underwriters in making
insurance policies, and for diagnosing causes of equipment failures to help repair
persons [1].

Early expert systems consisted of sets of production rules or frames, often called
“knowledge bases.” The name, “expert system,” was coined because a knowledge
base was typically constructed in early expert systems by interviewing one or
more experts in some domain of knowledge. An attempt was made to capture their
reasoning processes, when they solve problems in that knowledge domain, in the
form of “If . . ., then . . .” rules. For example, in MYCIN, a famous early expert
system for diagnosing bacterial infections, one of the rules is:

IF 1) the gram stain of the organism is negative, and
2) the morphology of the organism is rod, and
3) the acrobicity of the organism is anaerobic,
THEN there is suggestive evidence (.7) that the identity of the organism
is Bacteroides [2, p. 34].

This particular rule is one of over 400 such rules that comprise the MYCIN
knowledge base. A computer program, called an “inference engine,” uses this rule
set as data to help physicians identify unknown bacteria. The program makes
categorical inferences by using both the rule set and specific answers 1o questions
it asks a physician about propertics of the current situation (e.g., patient
symptoms, white blood cell count, and other lab test results). MYCIN has been
shown to be more accurate in its identifications of bacteria than typical practicing
physicians, particularly in identifying those bacteria which are rarely observed. It
is also noteworthy that epidemiological data, in addition to expert physicians,
were consulted in the formation and refinement of the MYCIN knowledge base.

Expert systems are not usually viewed as replacements for human decision
makers, but as aids or tools for such persons. An expert system obviously cannot
perform in areas not covered by its knowledge base. Furthermore, decisions
reached by an expert system can be no better than the accuracy of the knowledge
or rules that comprise its database.

In education and training, expert systems principles have been applied mostly in
intelligent tutoring systems [3, 4]. As an example, GUIDON was later developed
from MYCIN in an attempt to teach physicians how to identify different kinds of
bacteria [5].

Evolution of Expert Systems

Expert systems have undergone three major phases of theoretical development
According to Neapolitan, the first generation of expert systems of the 1960s
utilized probability theory and simple Bayesian reasoning to perform uncertain
inference [6, 7). In the 1970s rule-based systems—originally called production
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systems—were created that performed categorical inference (i.c., logical deduc-
tions with certainty). MYCIN is an example of such a second-generation expert
system. Probability theory was questioned, however, by some researchers
as a foundation for making uncertain inferences in rule-based systems which
attempted to model human reasoning. Alternative approaches were proposed such
as the use of certainty factors [8], the Dempster-Shafer theory of evidence [9], and
fuzzy set theory and fuzzy logic [10]. In the 1980s rescarchers began to build
normative expert systems {cf., 6]. These third-generation systems do not attempt
to imitate actual human reasoning. Rather, Neapolitan takes the strong position
that [6, p.2}:

. . . the fundamental goal of an expert system is to make the best possible
judgments, not to descriptively model human reasoning. If expert consensus
and the results of an autopsy were different, I would want the system to agree
with the results of the autopsy. I would not want the system to agree with the
experts much less model the way the experts reason. If this view is taken, the
normative approach of the 1980’s is appropriate in expert systems which must
perform uncertain inference.

Perhaps the term, “knowledge-based” or “data-based decision support systems”
would be preferable to “expert” systems, since the name may connote that the
expertise is modelled after human reasoning. Indeed, in the insurance industry
actuarial tables are consulted by expert systems developed to aid underwriters.
The “expertise” in the life expectancy tables is based on large statistical samples
of persons who have characteristics and health profiles to similar to those of the
individuals under consideration for policies. The knowledge is represented by a
statistical database.

Computerized Adaptive Tests

In a computerized adaptive test (CAT), items are selected which are close to
each particular person’s estimated ability level. For example, if a person misses a
question, a somewhat easier question is next asked. On the other hand, if a
question is answered correctly, then a slightly more difficult question is sub-
sequently selected. A computerized adaptive test does not waste time administer-
ing questions that are too hard or too easy for a particular individual. A CAT takes
no longer than necessary to obtain a satisfactory estimate of an examinee’s ability.
Adaptive tests tend to be shorter than conventional fixed-length tests, and the
results are as reliable if not more so. Most of the research on adaptive testing has
been based on item response theory, building upon the seminal work of Lord,
Novick and Bimbaum {11].

In an extensive review of the literature, Plew found that early notions of
adaptive testing were emerging about the time computers were invented in the
1940s [12]. These early attempts employed relatively simple decision approaches
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such as the sequential probability ratio test developed by Wald and hierarchical
branching strategies. Test administration and computation had to be done by hand,
since interactive computing was not to become available for several decades.
Hence, adaptive tests were impractical at that time.

Frederick Lord invented item response theory in the early 1950s, but did little
more with it until the middle 1960s when he found sufficient empirical evidence
to justify the form of the item response function. Since the publication of Statis-
tical Theories of Mental Test Scores in 1968, a large number of research studies on
applications of IRT have been conducted [3, 4]. Item response theory has been
applied to many areas of psychological measurement, including a relatively small
but growing body of research on computerized adaptive testing [3, 5]. David
Weiss, his colleagues and students conducted numerous studies of CATs in the
1970s and 1980s at the University of Minnesota Psychometric Methods Program.
Item response theory, coupled with item selection strategies such as maximum
information search and selection, proved to be a solid foundation for CAT [6].

The advent of powerful personal computers in the 1980s helped to bring CATs
out of the research laboratories and into practical settings {12, 15-28]. For
example, the Portland, Oregon public schools have implemented CATs {18].
CATs have also been approved by the Maryland State Board of Education for
assessing mathematics and reading competencies required for high school gradua-
tion [20]. Bunderson, Inouye and Olson describe a number of applications of
CATs, as well as speculate about future kinds of continuous and intelligent
measurement systems [15].

It is noteworthy that most research on applications of CATs in based on an IRT
or Rasch model where tests are taken by many thousands of individuals (e.g., by
standardized testing agencies, U.S. armed forces, and state- or district-wide testing
of student academic achievement). Relatively little effort has been directed toward
practical applications of CATs for classroom tests constructed by teachers for
evaluating student learning. There is also a paucity of research on use of CATs for
determining student mastery of instructional objectives during computer-based
instruction or in computer-managed instructional systems.

Third-Generation Expert Systems and Computerized
Adaptive Tests

It might appear to many readers that expert systems and CATs arc quite
different kinds of entities. Indeed, developments in these two areas have been
promulgated by different camps, one from the artificial intelligence and cognitive
science area, and the other from psychometrics and education. Although a CAT
may superficially seem quite different from an expert system such as MYCIN,
both are examples of intelligent computer programs. Neapolitan considers an
intelligent computer program to be “. . . one which makes judgments or gives
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assistance in a complex area.” He further states, “Such programs are often called
expert systems.” [6, p. 1]. . ‘

If such a broad view of expert systems is taken, then a computerized adaptive
test is clearly one type of an expert system:

1. The knowledge base for an IRT-based CAT is a set of item response
functions estimated from prior test administrations. That is, each item
response function (IRF) is a compact way of saying, “If the examinee abilit.y
tevel is X, and item Y is asked, then the probability of a correct response is
predicted to be Z.” )

2. CATs have inference engines that typically use Bayesian or maximum
likelihood estimation methods.

3. Expert systems make judgments, typically by attempting to choose one
alternative from a number of mutually exclusive and exhaustive con-
clusions. A typical goal of a CAT is to estimate an examinee’s achievemcr!t
or ability level with enough confidence to make a decision such as pass/fail
or a grade classification.

4. Expert systems collect information in order to make judgments. A C{\T
does this by selecting questions on the basis of the amount of infon'n‘auon
they provide, depending on the ability of an examinee. His or her ability or
achievement level is in turn estimated on the basis of which questions she or
he previously answered correctly and incorrectly, and their respective IRFs.
For example, Weiss and Kingsbury use a maximum information search and
selection (MISS) procedure to choose each new question during a CAT.
They also use Bayesian, or alternatively, maximum likelihood estimation
methods of updating estimates of an examinee’s achievement level [6).

Thus, although not widely recognized at this time, an adaptive testing system
is one type of an expert system. I first realized this some years ago when develop-
ing computer code for an expert system, having already developed code'for
Bayesian decision methodologies and a computer-based testing system. l?ubllcz':-
tions by computer scientists such as Neapolitan [6] and Heines [29] confirm this
observation.

Nonetheless, in the research literature it appears that these two threads of
development have been almost entirely independent. A 1990 computer search of
numerous bibliographic databases only turned up thirteen articles where the terms,
“expert systems” or “artificial intelligence” and “adaptive” or “computer”'and
“esting” or “test” were used as descriptors. Only one of these thirteen amc.:les
pertained to psychological testing; the remainder were in the field of engineering.
The two camps not only use different language to describe their activities, but also
tend to publish in different journals and attend different conferences. It also
appears that neither camp understands the other’s work very well. For ex.amplc,
one anonymous reviewer of an earlier version of this article found it difficult to
accept that a CAT was an expert system. Based on his or her written comments,
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this reviewer was apparently well-versed with the literature on CATs but took a
narrow and somewhat naive view of expert systems (second generation only).

THE DEVELOPMENT OF EXSPRT

The Problem of Large Numbers

A probiem with the IRT-based approach to adaptive testing faced by many
practitioners, however, is that a relatively large number of examinees must be
tested in advance in order to estimate accurately item parameters of difficulty,
discrimination, and lower asymptotes (200 to 1000 depending on the model used
and the number of items in a pool). Furthermore, proponents of the Rasch model
(one-parameter IRT model) have indicated that there is no valid way of estimating
models without imposing arbitrary constraints [cf., 30 :

While the large number of examinees required for estimating item parameters
may not be an issue for professional test developers (e.g., testing agencies, the
armed forces, state-wide student assessment programs), it does pose a real prob-
lem for classroom teachers who make up their own tests and who want to
administer them adaptively by computer. It also poses a problem for developers of
computer-based instructional materials who also want to incorporate CATs. CATs
appear to have considerable potential in mastery-based learning situations such as
in computer-managed instructional systems, personalized systems of instruction,

item discrimination and lower asymptotes for the two- and three-parameter

and so forth. For these kinds of situations, the IRT approach to adaptive testing’

can be likened to the use of a cannon to kill a mosquito. ‘

For nearly ten years I have been searching for-alternatives to IRT which would
be appropriate for computer-based assessment of student mastery in classroom
learning situations. 1 previously investigated the predictive validity of the sequen-
tial probability ratio test (SPRT) for making mastery decisions, where the lengths
of tests were adapted according to student performance [22]. Mastery. decisions
reached with the SPRT, when used conservatively, agreed highly with those based
on total test results. Nonetheless, the SPRT does not explicitly take into account
variability in item difficulty, discrimination or chances of guessing, as does the
three-parameter IRT model. Moreover, items are selected randomly in the SPRT,
rather than on the basis of their characteristics and estimated examinee ability or
achievement level as in the MISS procedure.

Is there some middle ground between the relatively simplistic SPRT decision
model and the relatively sophisticated IRT-based approach? When considering the
problem from an expert systems perspective, a solution became appareni. Instead
of considering a continuum of alternatives, as is the case in IRT-based CATS, I
hypothesized that if the goal of an adaptive testing system is to choose between a
few discrete alternatives (e.g., mastery or nonmastery; grades of A, B, C, etc.),

__ objective.
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then it should be possible to develop a satisfactory rule base from a smaller sample
of examinee test data—compared to the IRT model.

“T'he reader should note that the goal here is to determine student mastery ofa
single objective, where test items are developed to match that objective—follow-
ing Robert Mager’s philosophy [31]. This is referred to as criterion-referenced
testing or mastery testing [22]. For example, if the objective is for students to be
able to classify birds according to type, then the pool of test questions could
consist of a number of pictures of different kinds of birds. Given a picture of a
bird, the student is asked to name the type of bird (e.g., robin, cardinal, wood-
pecker, finch, etc.). If a student were to successfully identify most or all of the
birds, then we would conclude that the student had mastered the instructional
objective (i.c., is able to classify common birds in the United States according to
type). On the other hand, questions such as, “In what regions of the United States
are cardinals found?” would be inappropriate because they do not match the

In cohtraéi, the standardized achievement tests that are familiar to most teachers
and students are designed to assess a wide range of instructional objectives. For
example, on a mathematics subtest students might be asked to answer questions on
simple arithmetic, fractions, decimals, algebraic equations, etc. Student per-
formance on such tests can permit comparison of his or her achievement level to
those of other students across a broad mathematics curriculum in clementary
and secondary schools. The reader should note that this kind of norm-referenced
test is not the kind of assessment for which the following methodologies were

developed.

Development of the Rule Base for a Given Test Item Pool

Assume that we have developed a pool of test items which match a single
instructional objective and that our goal is to choose between two alternatives for
any given student: mastery or nonmastery of the objective. For each item i in the
pool we create four rules:

Rule i.1: If the examinee is a master and item i is selected, then the probability
of a correct response is P(C; | M). '

Rule i.2: If the examinee is a master and item i is selected, then the probability
of an incorrect response is P(~Ci | M).

Rule i.3: 1f the examinee is a nonmaster and item i is selected, then the
probability of a correct response is P(Ci [ N).

Rule i.4: If the examinee is a nonmaster and item i is selected, then the
probability of an incorrect response is P(~Ci|N).

Notice that these rules are essentially in the same if-then form as the sample rule
from the MYCIN expert system at the beginning of this article. In MYCIN the
rules were developed on the basis of expert knowledge and epidemiological data



194 / FRICK

on the co-occurrence of various kinds of gram stain, morphology and aerobicity
and the incidence of each kind of bacterium. In our case, we will rely on empirical
data collected on the test items with a representative sample of examinees who are

characterized by the discrete categories from among which our expert system will

later attempt to choose.
In the dichotomous case, the estimates of probabilitics of correct responses to
items by masters and nonmasters are determined as follows:’

1. Give the pool of test items to a representative group of examinees, about
half of whom are expected to be masters and half nonmasters—i.e., for
whom you expect a wide range of scores on the test.

2. Choose a mastery cut-off score (e.g., .85).

3. Divide the original group into a mastery group and nonmastery group based
on their total test scores and the mastery cut-off.

4. For each item in the mastery group, estimate the probabilities of correct and
incorrect responses by the following formulas [see. 32] 2

P(Ci | M) = (#1in + 1)/(#1iz + # Wi + 2) [1.1]
P(-G|M)=1-P(G|M) [1.2)
where #nm = number of persons in the mastery group who answered the

item correctly;
and  #wy = number of persons in the mastery group who missed the

item.
5. Do likewise for the nonmastery group for each item:
P(G [ N) = (#1is + 1)/(iria + #Wia + 2) [1.3]
P(~-CIN) = 1-P(G|N) (14]

Method of Making Inferences in the EXSPRT

The reasoning procedure employed in our expert systems approach is Bayesian,
with the addition of stopping rules from the sequential probability ratio test
(SPRT) [22, 32, 33]. A likelihood ratio is computed after each administration of a
test item.

1 . . V
Note that this reasoning can be extended to more than two categories, such as letter grade
designations.

2 Note that the estimates of these probabilities of correct responses to items by masters and
nonmasters will never be one or zero. This means that, in the EXSPRT Bayesian updating process
during the administration of a test to an examinee, the probabilities of the mastery and nonmastery
alternatives will never be zero or one, though these extremes may be closely approached.
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P,,.H P(Ci| MY[1-P(Ci | M)

LR = (2]

P.] [P(C I NY11-P(C | MY

iel

where
P. = prior probability that the examinee is a master,
P.a = prior probablllty that the examinee is a nonmaster, *
and s =1, f=0if item i is answered correctly,
s=0,f=1if item i is answered incorrectly,
s =0, f=0if item i has not been administered.

The three stopping rules are:
IfLR z (1 B) + a, then stop asking qucstlons and choose mastery. [3.1]
IfLR s P+ (1 a), lhen stop asking queshons and choose nonmastery [3.2])

Otherwise ask another question, update LR, and reiterate rules 3.1 t0 3.3. [3.3]

Alpha and beta are Type I and II decision errors, respectively. Alpha is the
probability of choosing mastery when the nonmastery alternative is actually true.
Beta is the probability of choosing nonmastery when the mastery altemative is
true. For numerical examples of this Bayesian rcasomng process, the reader is

referred to [34].

item Selection

Random Item Selection: EXSPRT-R — When the EXSPRT was initially
conceived, I viewed it as an extension of the Bayesian approach to the SPRT, as
noted in [22], but used empirically derived data for estimating the probabilities of
correct responses by masters and nonmasters to each test item rather than average
probabilities across all items. In this initial approach to the EXSPRT, items were
selected randomly without replacement, and it was assumed that observations
were independent in order to multiply the conditional probabilities to form the
likelihood ratio. This version of the EXSPRT is referred to as EXSPRT-R, in
contrast to the intelligent item selection procedure discussed below.

Intelligent Item Selection: EXSPRT-I — Thomas Plew was not satisfied with
EXSPRT-R, since it did not use information about test items in the selection
process [12]. Plew and I jointly developed an item selection procedure that
is modeled after basic principles used by Weiss and Kingsbury in the MISS

3 Note that if the prior probabilities of mastery and non-mastery are equal, then they drop out of the
formula for the likelihood ratio.
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(maximum information search and selection) procedure. Though the principles are
comparable, the mathematical approaches are quite different.

In the EXSPRT-I (i.c.,, with “intelligent” item selection), the reasoning is as
follows:

Item discrimination — If we are trying to choose between mastery or non-
mastery alternatives, then an item is more discriminating when the difference
between probabilities of correct responses by masters and nonmasters is greater.
For example, if the probabilities of a correct response to item #5 are .90 for
masters and .25 for nonmasters, then item #5 is very discriminating (difference =
.65). On the other hand, if the probability of a correct response to item #53 is .85
for masters and .75 for nonmasters, then this item is much less discriminating
(difference = .10). Or if the probability of a correct response to item #12 is .60 for
masters and .80 for nonmasters, then such an item is negatively discriminating
(difference = —.20).

Thus, the discrimination index for item § is defined:

Di=P(C:|M)-P(G|N) [4]

Item/examinee incompatibility — Not only do we want to select highly dis-
criminating items, but also we want to select items that are matched to an
cxaminee’s estimated achievement or ability level. In theory, we gain little addi-
tional information by administering items which are very easy or very hard for a
given individual. Better items would be those which a person has a fifty/fifty
chance of answering correctly—i.c., which are very close to her or his achieve-
ment level. For example, if an examinee’s achievement level is estimated to be .80
(on a scale from zero to one), then a good item would be one that was answered
incorrectly by 80 percent of the examinees in the item parameter estimation
sample (P(G) = .20 for masters and nonmasters combined).

Thus, the item/examinee incompatibility index is defined for each item:

Iy = abs{(1 - P(C)) - E (®)} (5]
where E(®) = (#1; + 1)/(Hr; + #w; + 2) (6]
and  P(C) = (#ri+ 1)/(#n + #w; + 2) (7]

Note that #r; and #w; are the numbers of questions answered correctly and
incorrectly, respectively, thus far in the test by the current examinee. Note alsc
that the estimate of P(C;) is based on the total number of persons in the parameter
estimation sample for item i, irrespective of mastery status. Thus, #r; is the number
of persons who answered item i correctly and #w; is the number who answered 1t
incorrectly. Finally, note that the item/examinee incompatibility index is based on
the absolute value of the difference between the estimate of the probability of an
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incorrect response to the item and the estimate of the current examinee’s achieve-
ment level (proportion correct metric).

Item utility — As a test proceeds, item utilities are re-calculated for all items
remaining in the pool, in order to select and administer a new one that now has the
most utility for an examinee:

Uy = D/(Ily + ) [8]

where 0 = some arbitrary small constant (e.g., .0000001),
to prevent division by zero in case I; = 0.

Thus, each utility value is simply the ratio of the discrimination of item i and its
incompatibility with person j’s achievement level. The item that is selected next in
the EXSPRT-I (intelligent selection) is the remaining one with the greatest utility
at that point for that particular examinee. This means that the item selected next is
the one which discriminates best between masters and nonmasters and which is
least incompatible with the current estimate of that examinee’s achievement level.
Note that item utilities change during a test, depending on an examinee’s per-
formance which affects the estimate of his/her achievement level in the item/
examinee incompatibility index. In effect, the EXSPRT-1 is comparable to the
two-parameter item response theory model (IRT) in that both item discrimination
and item difficulty are considered in the item selection process [35].

Unanswered Questions

Since the EXSPRT-R and EXSPRT-I are new approaches to computerized
adaptive testing, two empirical studies were conducted to compare these
approaches to extant IRT-based adaptive mastery testing and SPRT approached
[cf., 16, 22, 35]. Of major concern was the accuracy with which each adaptive
model could predict decisions based on total test scores. Does each adaptive
method make mastery and nonmastery decisions with no more errors than would
be expected by a priori error rates? Second, how efficient is each adaptive method
in terms of average test lengths for mastery and nonmastery decisions? Are any of
the methods more efficient than others?

FIRST STUDY

Digital Authoring Language Test

A computer-based test on the structure and syntax of the Digital Authoring
Language was constructed, consisting of ninety-seven items, and referred to as the

‘ Altemnatively, 8; could be considered as some kind of “guessing” factor for the item. However, this
will not be considered in the present article.



198 / FRICK

DAL test. This test was comprised of multiple-choice, binary-choice, and short-
answer questions. The test was highly reliable (Cronbach o = .98). The DAL test
was also very long, usually taking between sixty and ninety minutes 1o complete,
and it was very difficult for most examinees (mean score = 63.2 percent correct,
S.D. = 24.6).

Examinees

The persons who took the DAL test were mostly either current or former
graduate students in a course I taught on computer-assisted instruction. Those
students who were currently enrolled at the time took the DAL test twice, once
about mid-way through the course when they had some knowledge of DAL—
which they were required to learn for developing CAI programs—and once near
the end of the course when they were expected to be fairly proficient in DAL. The
remainder of the examinees took the DAL test once. Since the test was long-and
difficult, no one was asked to take the test who did not have some knowledge of
DAL or other authoring languages.

Test Administration

The DAL test was individually administered by the Indiana Testing System
[36]. As an examinee sat at a computer terminal, items were selected at random
without replacement from the total item pool until ali items were administered.
Students were not allowed to change previous answers 10 questions, nor was
feedback given during the test. Upon completion of test, complete data records
were stored in a database, including the actual sequence in. which items were
randomly administered to a student, response time, literal response to each item,
and the item scoring (correct or incorrect). Examinees were informed of their total
test scores at the end of the test. There were a total of fifty-three administrations of
the DAL test in the first study. '

Experimental Methods

The basic procedure was to re-enact each test, using actual examinee responses
in the database, for cach of the four adaptive methodologies: 1) IRT-based adap-
tive mastery testing (AMT—with maximum information search and selection
[MISS]); 2) sequential probability ratio test (SPRT); 3) EXSPRT-R (random
selection of items); and 4) EXSPRT-I (intelligent selection of items—see above
descriptions).

Item parameter estimation — Two random samples of examinees were uscd 1
estimate item parameters (n = 25 and n = 50), the latter containing the former. Thn
was done to see if increasing the sample size used for parameter estimation would
result in fewer decision errors in the four methods. Due to the relatively small
sample sizes, the one-parameter AMT model was used—i.e., only b; estimales
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were obtained for the two samples using program BICAL [37]. For the EXSPRT-
R and EXSPRT-I, the rule base for each parameter estimation sample was
constructed using formulas (1.1), (1.2), (1.3) and (1.4). The mastery cut-off was
set at 72.5 percent, half way between the established .85 mastery level and .60
nonmastery level used in an earlier study of the SPRT only [22]. In the current
study, however, the mastery and nonmastery levels for the SPRT were established
empirically from the .725 cut-off and the two parameter estimation samples. The
mean proportion correct for masters was used as the mastery level and the mean
proportion correct for nonmasters was used as the nonmastery level in each
sample. In effect, the SPRT was treated just like the EXSPRT-R, except that the
rule quadruplets for all items were the same in the SPRT, based on the sample
means for masters and nonmasters, respectively.

Test re-enactments —. Once the parameter -estimation samples were chosen,

- then two doctoral assistants independently wrote computer programs in two

different languages (Pascal and DAL) to construct the rule bases for the EXSPRT,
and to carry out the four different adaptive testing methods on the same fifty-three
sets of test administrations. This was done to reduce the possibility of error in
coding these rather complex methodologies, especially the AMT model. When
results did not agree, as was occasionally the case, this helped to identify and
ameliorate errors in coding. The one difference that was not correctable was traced
to the precision of arithmetic in DAL and Pascal on a VAX minicomputer.

It was discovered that on occasion the MISS procedure in the two programs
would begin to select different items in the AMT model after fifteen to twenty
items had been retroactively “administered” to an examinee. This occurred
because the updating of the estimate of 0 and its variance, and in turn the item
information estimates for that 0 estimate, would tend to differ very slightly in the
two code versions as a test progressed. Consequently, the MISS procedure would
occasionally pick a different item in the two different versions when estimates of
item information were very close for two or more items remaining in the pool.
From that point on in a test, different item sequences were observed. The average
AMT test length in the DAL version tended to be about one item shorter,
compared to the Pascal version, but the decisions reached were the same with
one exception.

These discrepancies do point out a problem inherent in the IRT-based approach,
which contains numerous multiplications, divisions, and exponentials [35,
formulas (9) to (25)]. Very small errors due to rounding or differences in precision
of arithmetic can magnify themselves rather quickly. This problem was not
observed with the EXSPRT-I, EXSPRT-R, or SPRT—other than differences in
the millionth’s decimal place when computing probability ratios.

1. AMT re-enactment. The mastery cut-off was converted to 0. using the test
characteristic curve [35, formula (24)} and the item parameter. database con-
structed from the respective parameter estimation sample (either n = 25 or 50).
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The value of 0. was used as the initial prior 0 and the prior variance was set to one,
as recommended by Weiss and Kingsbury [16]. The MISS procedure was used to
select the next test item for the re-enactment for each examinee [35, formulas (10)
to (12)]. The correctness of the examinee’s response to that item was determined
by retrieving it from the database. Bayesian updating of © and its variance was
accomplished with Owen’s method [38]. [See 35, formulas (13) to (22)]. After
each item was “administered”, the AMT stopping rules were applied using a .95
confidence interval [35, formulas (25.1) to (25.3)}. If a decision could be reached,
the re-enactment was ended at that point. The number of questions answered
correctly and incorrectly in the AMT and the decision reached for that examinee
were written to a computer data file. Also stored in that file were the total test
score for that examinee and the agreement between the AMT decision and the
total test decision. If no decision could be reached by the AMT model before
exhausting the test item pool, then a decision was forced at the end of the test: if

the current estimate of © was greater than or equal to 0., the examinee was

considered to be a master; otherwise a nonmaster.

2. SPRT. The mastery and nonmastery levels required by the SPRT were
empirically established from the parameter estimation samples, as described
above. Since the SPRT requires random selection of items, test items were
“administered” in a random order. Alpha and § levels were set at 0.025, to make
the overall decision error rate (.05) equivalent to the .95 confidence interval
method used in the AMT approach. When the SPRT reached a mastery or non-
mastery decision, results were stored in a separate data file in the same manner as
described above for the AMT.

3. EXSPRT-R. As in the SPRT, items were “administered” in a random order.
However, the rule bases constructed from the parameter estimation samples were
used, of course, in the EXSPRT-R method of Bayesian updating (formula (2),
with equal prior probabilities) and SPRT stopping rules (formulas (3.1) to (3.3).
For a description of EXSPRT-R procedures, see {34] for an example of expert
systems reasoning during computer-based testing. When the EXSPRT-R reached
a decision, the test re-enactment was ended and results written to a data file
as before.

4. EXSPRT-I. This method was the same as the EXSPRT-R, except that items
were selected intelligently, based on their utility indices (see formulas (4) to (8)).
Thus, like the AMT, items were not “administered” randomly for each re-enact-
ment. Since no feedback was given during the test it is unlikely that decisions
reached by both AMT and EXSPRT-I methods would be systematically affected
by factors other than differences in the adaptive methods themselves. One mitigat-
ing factor might be examinee fatigue, where examinees were more likely to
answer questions incorrectly at the end of the long and difficult test. However,
since all test items were originally administered in a different random order for
each individual, it is very unlikely that fatigue would systematically bias any
findings.
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Results from the First Study

For the DAL test, IRT item parameters (bi’s) were estimated from samples of
twenty-five and fifty examinees. EXSPRT rule bases were also derived from the
same samples. Descriptive information is given about the two samples in the left
side of Table 1. It can be seen that there were about the same proportions of
masters and nonmasters in each sample. In the sample of fifty there were twenty-
three masters whose average test score was 87.3 percent, and twenty-seven non-
masters who scored 45.1 percent correct.

Mean test lengths of each of the four methods, variation in test lengths, and
decision accuracies were compared. If the decision made by an adaptive method

Table 1. Efficiency and Accuracy of the Four Adaptive Testing Methods

in the First Study”
ltem Parameter o T
. Sample Description Adaptive Testing Method
AMT SPRT EXSPRT-R  EXSPRT-|
Mean Score Mean Length Mean Length Mean Length Mean Length

(s.D.) (s.D) (s.D) (8.D) (s.D)

n Accuracy Accuracy Accuracy Accuracy
Masters 87.46 8.40 8.72 7.56 5,44
(7.90) (9.62) (5.16) (3.22) (1.23)
12 100.0 92.0 100.0 100.0
Nonmasters 42,66 20.57 10.54 12.71 5.64
(15.83) (24.45) (7.14) (15.46) (2.02)
13 96.4 85.7* 96.4 85.7*
Total 64.16 14.83 9.68 10.28 5.55
(25.99) (19.77) (6.29) (11.65) (1.68)
25 98.1 88.7 98.1 925
Masters 87.27 8.28 10.36 8.44 6.84
(7.89) (8.19) (6.92) (5.74) (2.64)
23 100.0 96.0 96.0 100.0
Nonmasters 45.06 18.29 10.11 9.39 5.93
(16.25) (24.43) (10.97) (9.15) (2.28)
27 96.4 89.3* 92.9 92.9
Total - 64.47 13.57 10.23 8.94 6.36
(24.89) (19.14) (9.20) (8.94) (2.47)
50 98.1 92.5 94.3 96.2

“Alpha = g = 0.025 for the SPRT, EXSPRT-R, and EXSPRT-I; a .95 confidence interval
was used with the AMT. There were fifty-three administrations of the DAL test which were
re-enacted for each of the four adaptive methods.

*Parcent accuracies were tested by goodness of fit, where .975 accuracy was expected
according to the a priori error rates for ters and nor ters. Only those percent
accuracies which differed significantly from the expected accuracies, according to a chi-
square test (d.f. = 1, p < .05) are marked with an asterisk.




202 / FRICK

was the same as that reached on the basis of the entire test item pool, this
was considered to be a “hit”. Thus, the accuracy measures are the percent of
correct predictions made by each method. There were twenty-eight nonmasters
and twenty-five masters identified by the entire 97-item test, when the cut-off
score was set at 72.5 percent correct.

First, note that the parameter sample size seems to make little difference in the
mean test length within each method. For example, within the AMT model 20.6
items were required for nonmastery decisions when item parameters were based
on a sample of twenty-five, compared to a mean of 18.3 for the sample of fifty. For
the EXSPRT-], 5.6 items were required for nonmastery decisions in the sample of
twenty-five, compared to a mean of 5.9 for the parameter sample of fifty. Please
note—and this is confusing—that the mean test lengths for each of the four
methods are based on the same fifty-three test administrations, where all ninety-
seven items were originally given, and which were re-enacted under each adaptive

method. The size of the parameter estimation sample refers to the number

of examinees randomly selected on whom the item difficulties were estimatéd
for the AMT model and on whom the item rule bases were constructed for the
EXSPRT-R and EXSPRT-1 models.

Decision accuracies — For the fifty-three administrations of this DAL test there
does seem to be some difference in decision accuracies within each model for the two
parameter estimation sample sizes. The decision accuracies tended to be high for all
methods. Decision accuracies were compared to expected values of 975 correct
mastery decisions and .975 correct nonmastery decisions, using Chi-square goodness
of fit tests [39). A significant Chi-square (p < .05) means that the observed decision
accuracies departed from what was expected according the a priori decision error
rates that were established for each of the four adaptive testing methods. '

When twenty-five examinees were used for parameter estimation, there were

two significant departures from expected accuracy. The EXSPRT-I was 85.7
percent accurate in nonmastery decisions, which significantly differed from the
expected 97.5 percent accuracy. At the same time, however, the EXSPRT-I was
reaching decisions when the other models were requiring two to four times as
many items. The SPRT accuracy for nonmastery decisions was also significantly
lower than expected.

When fifty examinees were used for parameter estimation, the AMT, EXSPRT-
R, and EXSPRT-I models were within the expected range of accuracy. The SPRT
failed to make as many correct nonmastery decisions as were expected. What is
notable is how well all of the adaptive methods predicted total test decisions,
while using between five and twenty items from the 97-item pool to reach those
decisions—a very substantial reduction in test lengths (80 to 95% decrease).

Efficiency — A repeated measures ANOVA was conducted to see if there were
significant differences among the mean test lengths for the four adaptive methods.
This was done for the results based on the parameter sample of fifty for the
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fifty-three test administrations. Hotelling’s T® was significant at the .05 level.
However, the sphericity assumption was violated, due to the large differences in
variances among the four methods. A post hoc comparison procedure suggested
by Marascuilo and Levin for this kind of situation was conducted for all pair-wise
contrasts of mean test lengths [40, pp. 373-381). One statistically significant
difference was found. The mean test length for the SPRT was significantly greater
than that for the EXSPRT-I. Even though some of the other contrasts have greater
magnitudes of difference, the within-method variances are very different them-
selves. It can be noted that, overall, the AMT model required about twice as many
jitems to reach decisions (13.6) as did the EXSPRT-I (6.4), though it was not
statistically significant at the .05 level.

The variances in average test lengths within each adaptive method were
significantly different, as noted above in violation of the sphericity assumption.
The variance in test lengths for the AMT model was approximately sixty times
larger than that for the EXSPRT-1 model (19.14° vs. 2.47%. In the AMT model,
tests tended to be longer before nonmiastery decisions were reached, and there was
much more variation in test lengths compared to the remaining models. The
variation in lengths of tests with EXSPRT-1 method was relatively small com-
pared to variation in the remaining models.

SECOND STUDY

Computer Functions Test

A computer-based test on how computers work, consisting of eighty-five items,
was constructed. The COM test, as it is referred to here, was comprised of about
half multiple-choice, one-fourth binary choice, and one-fourth fill-in type ques-
tions (Cronbach a = .94). Compared to the DAL test, the COM test was much
easier for most examinees (mean score = 79.0 percent, S.D. = 13.6).

Examinees

About half of those who took the COM test were from two sections of an
introductory graduate-level course on use of computers in education. The
remainder were mostly volunteers from an undergraduate-level course for non-
education majors who were learning to use computers. A small number of students
were volunteers recruited at the main library on campus.

Test Administration and Experimental Methods

The COM test was individually administered by the Indiana Testing System in the
same manner as the DAL test. There were a total of 104 administrations of the COM
test in the second study. The same four adaptive testing methods were re-enacted from
actual examinee test data in the very same manner as described above for the DAL test.
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Table 2. Efficiency and Accuracy of the Four Adaptive Testing Methods
in the Second Study”

ltem Parameter

Sample Description Adaptive Testing Method
AMT SPRT EXSPRT-R  EXSPRT-|
Mean Score Mean Length Mean Length Mean Length Mean Length
(s.D.) (s.D.) (s.0.) (S.D) (s.D.)
n Accuracy Accuracy Accuracy Accuracy
Mastors 86.21 8.37 11.74 10.05 4.57
(6.35) (13.59) (7.80) (5.42) (3.60)
18 97.4 98.7 98.7 98.7
Nonmasters 48.07 33.93 14.39 15.00 7.07
(9.10) (31.83) (15.81) (10.41) (2.36)
7 82.1* 85.7* 82.1* 67.9*
Total 75.53 15.25 12.43 11.38 5.24
(18.84) (23.02) (10.55) (7.39) (3.49)
25 93.3 95.2 94.2 90.4
Masters 87.16 11.83 15.08 11.71 572
(5.68) (18.23) {9.06) (8.28) (3.92)
35 94.7 96.1 . 98.7 96.1
Nonmasters 53.65 31.89 17.39 15.82 7.93
{10.44) (29.97) (14.50) (12.70) (6.21)
15 78.6* 92.9 96.4 89.3*
Total 77.11 17.23 15.70 12.82 6.32
{17.15) {23.61) (10.77) (9.78) 4.72)
50 90.4 95.2 98.1 94.2

Results from the Second Study

Since there were more administrations of the COM test, parameter estimation
samples of twenty-five, fifty, seventy-five and 100 were selected at random. Four
sets of b; coefficients were obtained for the AMT model and four rule bases were
constructed for the EXSPRT models based on the same four parameter estimation
samples. See the left sides of Table 2 for descriptive information about the
parameter estimation samples.

Accuracy of predictions — When the parameter estimation sample was twenty-
five, all four adaptive methods did not perform as well as expected in correctly
predicting nonmasters in the 104 administrations of the COM test. Chi-square
goodness of fit tests showed that all four methods significantly departed from the
expected accuracy rates. EXSPRT-I had the worst accuracy, but it should be noted
that there were only seven nonmasters in the estimation sample for creating the
rule base, so this is not surprising.
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Table 2. (Cont'd.)

Item Parameter

Sample Description Adaptive Testing Method
AMT SPRT EXSPRT-R  EXSPRT-|
Mean Score  Mean Length Mean Length Mean Length Mean Length
(s.D) {s.D.) (8.D.) (s.D) (S.D.)
n Accuracy Accuracy Accuracy Accuracy

Masters 87.68 10.21 16.64 11.78 7.70
(5.93) (16.96) (10.35) (6.34) (7.13)

55 94.7 97.4 97.4 94.7

Nonmasters 56.00 28,93 16.29 14.75 7.82
(10.17) (28.58) (16.96) (15.54) (4.85)

20 82.1* 92,9 100.0 100.0

Total 79.23 15.25 16.55 12.58 7.73
(15.84) (22.21) (12.39) (9.71) (6.57)

75 91.3 96.2 98.1 96.2

Masters 87.47 13.76 16.97 13.58 7.64
(6.33) (20.80) (10.75) (9.51) (6.12)

75 93.4* 96.1 98.7 94.7
Nonmasters 56.00 31.50 13.04 12.32 8.93.
(11.34) (20.77) (10.66) (10.78) (7.41)

25 78.6* 92.9 96.4 100.0
Total 79.60 : 18.53 15.91 13.24 ) 7.99
(15.77) (24.70) (10.82) (9.83) (6.48)

100 89.4 95.2 98.1 96.2

®Alpha = § = 0,026 for the SPRT, EXSPRT-R, and EXSPRT-I; a .95 confidence interval
was used with the AMT. There were 104 administrations of the COM test which were
re-enacted for each of the four adaptive methods. :

*Percent accuracies were tested by goodness of fit, where .975 accuracy was expected
according to the a priori error rates for masters and nonmasters. Only those percent
accuracies which differed significantly from the expected accuracies, according to a chi-
square test (d.f. = 1, p < .05) are marked with an asterisk.

When the parameter estimation sample was fifty, the AMT and EXSPRT-I
models still made significantly fewer correct nonmastery decisions than expected
a priori. On the other hand, the SPRT and EXSPRT—both of which use
random selection of items vs. intelligent selection in the AMT and EXSPRT-1—
predicted masters and nonmasters correctly within the bounds of expected
€rror rates.

When the parameter estimation sample was seventy-five (55 masters and 20
nonmasters when the cut-off was 72.5 percent correct), all models predicted well
except the AMT, which made significantly fewer correct nonmastery decisions
than were expected a priori.
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When the parameter estimation sample was 100, the AMT model still had
problems with accuracy of nonmastery classifications. And strangely enough, the
AMT model also made significantly fewer correct mastery decisions than were
expected. The SPRT, EXSPRT-R, and EXSPRT-I all correctly predicted masters
and nonmasters within the bounds of expected accuracies. It should be noted that
it is generally recommended that a minimum of 200 examinees be used for
estimating b; parameters in the IRT-based, one-parameter AMT model. Only half
that number was available in this study. Thus, it is not surprising that the AMT
model performed less well than it should, since estimation of the item difficulty
parameters was not as precise as desired.

Efficiency — Average test lengths of the four adaptive methods were compared
for the 100 examinee parameter estimation situation only (see the bottom quarter
of Table 2). A MANOVA again revealed that the sphericity assumption was
violated, and so the same procedure as described above for the DAL test was used
in post hoc comparisons of the adapuvc COM test length means [40].

‘When nonmastery decisions were made, the AMT model required sngmﬁcantly
longer tests than either the SPRT, EXSPRT-R or EXSPRT-1. The AMT model
required about thirty-two items to reach nonmastery decisions, compared to the
EXSPRT-], which required about nine items. Moreover, the AMT made sig-
nificantly fewer correct nonmastery decisions than expected, as noted above.
‘When mastery decisions were reached, test lengths for the SPRT and EXSPRT-R
methods (15 and 12) were significantly longer than the EXSPRT-I (6 items).
Mean test lengths for mastery decisions in the AMT and EXSPRT-1 models were
not significantly different at the .05 level.

When looking at decisions overall, the following contrasts were significantly
different: the AMT, SPRT, and EXSPRT-R methods each required significantly
longer tests than did the EXSPRT-I model. The AMT model required over twice
as many items as did the EXSPRT-I (19 vs. 8).

Summary — 1t would appear from the COM test data that the EXSPRT-I is
significantly more efficient than the other adaptive methods. Indeed, it is rather remark-
able that the EXSPRT-I can make such highly accurate mastery and nonmastery
decisions with relatively few test questions. It is also notable that the EXSPRT-R and
SPRT also made highly accurate predictions, but were less efficient than the EXSPRT-1.
The AMT performed worst of all, not only resulting in longer adaptive tests but also in
making significantly more prediction errors than theoretically expected.

DISCUSSION

Adaptive tests tended to be shorter with the DAL test than with the COM test
(see Tables 1, and 2). Of the fifty-three administrations of the DAL test, there were
twenty-eight nonmasters and twenty-five masters when the cut-off was set at 72.5
percent and when examinees answered all ninety-seven items. The overall average
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test score was 63.2 (S.D. = 24.6). In the second study with the COM test there
were 104 administrations of this test, with seventy-six masters and twenty-eight
nonmasters when the entire 85-item test was taken (grand mean = 79.0, S8.D. =
13.6, mastery cut-off = 72.5 percent).

A similar study was conducted by Plew [12] with yet a different test on
computer literacy (referred to as the LIT test here). In his sample of 183 examinees
there were fifty-four masters and 129 nonmasters based on total test results from
the fifty-five-item pool. The cut-off for this test was 59.5 percent, and the overall
average score was 51.5 percent (S.D. = 14.2).

One thing that appears to affect the average test lengths is the location and shape
of the distribution of examinee achievement levels in relation to the cut-off
selected. In the first study, the distribution was somewhat bimodal and relatively
flat, with about half the examinees scoring above and below the cut-off. In the
second study, the distribution was positively skewed, with about three-fourths of
the examinees scoring above the 72.5 percent cut-off on the entire test item pool.
In the Plew study, over two-thirds of the examinees were classified as nonmasters
on the entire 55-item test [12]. The distribution of this group was close to normal,
with the mean being about eight percentage points below the selected cut-off.

I have previously conducted a number of computer simulations comparing the
three-parameter AMT model with the SPRT and a third adaptive method based on
Bayesian posterior beta distributions [35, 41]. One important finding in those
studies was that none of the adaptive methods performed as well as expected—
and average test lengths tended to be longer—when the distribution of examinees
was mostly clustered around the cut-off. Adaptive tests were shorter and accu-
racies agreed with theoretical expectations when the distributions of examinee
achievement levels were much flatter. The same phenomenon appears 1o have
occurred in the present two empirical studies, as well as in Plew’s.

The second factor that may affect results is the number of test items in each pool
and their propertics. When there are more test items, and there are more items
available at each ability or achievement level, then both the AMT and EXSPRT-]
tend to be more efficient and more accurate. In both adaptive methods which rely
on “intelligent” selection of items, Bayesian posterior estimates are affected more
dramatically when there are highly discriminating items available whose diffi-
culty levels are close to the current estimate of an examinee’s achievement level.
A real problem occurs with smaller item pools, as was the case with the LIT test
in Plew’s study: after the best items have been administered early in a test, the
remaining items tend to provide little additional information. That is, there are
diminishing retumns after some point because there are no really appropriate items left.

SUMMARY

Expert systems can be used to aid decision makers. A computerized adaptive
test (CAT) is one kind of expert system, though not commonly recognized as such.
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When item response theory is used in a CAT, then the knowledge or rule base is a
set of item response functions (IRFs).

Normally an expert system consists of a set of questions and a knowledge
base. An inference engine uses answers to the questions and the knowledge
base to choose from a set of discrete alternatives. If an adaptive test is viewed
this way, then it is possible to construct “If ..., then ...” rules about test items
that are not functions, as are IRFs. A new approach, termed EXSPRT, was devised
that combines expert systems reasoning and sequential probability ratio test
stopping rules. EXSPRT-R uses random selection of test items, whereas
EXSPRT-1 incorporates an intelligent selection procedure based on item
utility cocfficients.

These two new methods were compared to the traditional SPRT and to an
IRT-based approach to adaptive mastery testing (AMT). Two empirical studies
with different tests and types of examinees were carried out.

In the first study the EXSPRT-I model required about half as many items as did
the AMT approach (6 vs. 14), though the difference was not statistically sig-
nificant. When fifty examinees were used for jtem parameter estimation and rule
base construction, all four methods (AMT, SPRT, EXSPRT-R and EXSPRT-I)
made highly accurate mastery and nonmastery decisions.

In the second study the EXSPRT-I method again required about half as
many items as did the AMT model (8 vs. 19), and this time the difference
was statistically significant. When 100 examinees were used for estimation
purposes, the SPRT, EXSPRT-R, and EXSPRT- correctly predicted masters
and nonmasters within the bounds of the expected theoretical error rates.
The AMT model, however, made significantly more prediction errors than
expected. _

Although further research is needed, the EXSPRT-I initially appears to be a
strong alternative to both IRT- and SPRT-based adaptive testing when categorical
decisions about examinee mastery of a single educational objective are desired.
The EXSPRT-1 is clearly less complex than IRT, both conceptually and mathe-
matically. It also appears to require many fewer examinees (0 establish empir-
ically a rule base when compared to the large numbers required to estimate
parameters for item response functions in the IRT model. It is important to note
that the EXSPRT is vulnerable, as is classical test theory, in that a representative
sample of examinees must be selected for constructing rule quadruplets. This
seems to be a small price to pay for the advantages of theoretical parsimony and
operational efficiency, compared to IRT. : :

The reader is also reminded that EXSPRT was developed for criterion-
referenced testing of single learning objectives. If assessment of multiple educa-
tional objectives is desired, then pools of test items can be developed to match
each objective, respectively. The EXSPRT would then be applied to each objec-
tive individually. The overall outcome would not be a single test score but rather
a list of objectives a student has mastered and not mastered.
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The EXSPRT is expected to be most applicable to computer-based instruction,
computer-managed instructional systems, personalized systems of instruction and
other mastery learning contexts. The EXSPRT is not appropriate for norm-refer-
enced testing or when it is desirable to obtain a precise estimate of achievement on
some continuum.

Additional Research on the EXSPRT

While this article was under review additional studies of the EXSPRT were
completed by several of my doctoral students. One of the limitations of the present
study is that the sample for creating the item rule base was the same as that upon
which the EXSPRT test re-enactments occurred. Cross-validation with a new
sample would have provided greater assurance concerning the predictive validity
of EXSPRT decisions. A second limitation of the present study is that because of

_ the.relatively small sample size it was not possible to compare EXSPRT to the

two- and three- parameter IRT models. Hing-Kwan Luk recently completed a
study in which these two limitations were addressed [28].

Luk compared the EXSPRT and the three-parameter IRT model by re-enacting
two subtests of the College Entrance Examination Board Spanish Achievement
Test: a 40-item listening subtest and a 60-item reading subtest. Results were
available from 1672 students who took these tests to determine placement in
Spanish courses at Indiana University. One thousand of these examinees were
selected at random. Their data were used to estimate a, b, and ¢ ilem parameters
for the IRT model as well as for forming the rule quadruplets for the EXSPRT
model. The sample used for cross-validation and test re-enactments consisted of
the remaining 672 examinees.

A similar pattern of results obtained in Luk’s study as in the present study. The
EXSPRT-I tended to be much more efficient than the three-parameter IRT model
when mastery decisions were reached. Surprisingly, the IRT model was sig-
nificantly less accurate (73% and 83%) than the expected a priori theoretical rates
(97.5%) for mastery decisions, whereas both the EXSPRT-I and -R models were
within expected bounds on the two subtests. On the other hand, for nonmastery
decisions average test lengths for all three approaches tended to be shorter than
those for mastery decisions, with EXSPRT-I test lengths being shorter than AMT
and EXSPRT-R. A further surprise was that both EXSPRT-I and -R resulted in
nonmastery decision accuracies that were significantly below theoretical expecta-
tions (but still considerably higher than those for IRT-based mastery decisions). It
is noteworthy that the EXSPRT decisions were correct 90 to 95 percent of the
time, but less than the expected 97.5 percent accuracy. Luk conciuded that the
problems with decision accuracies in all three approaches may be duc to the
shape of the distribution of examinee scores in relation to the cutpoints chosen.
Consistent with computer simulations by Frick [35] and a different college
placement test studied by Plew [12], more decision errors were observed to occur
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when examinees’ scores were near the cutpoints on the two subtests in Luk’s
study [28].

In a different study Emily Powell was concerned that computerized adaptive
tests might increase student test anxiety, which in turn might impair performance
on CATs [24]. She measured student test anxiety and performance on students’
actual exposure to EXSPRT-I, -R and -S (self-adaptive) methods. These were
not test re-enactments from previously collected data as in Plew’s, Frick’s and
Luk’s studies. She found no significant differences in student performance
levels across the three methods, nor in their anxiety levels. Mastery and non-
mastery decisions reached by the three testing approaches and one-parameter
IRT (Rasch) estimates of student achievement were highly correlated. She did
find a significantly positive correlation between anxiety and performance for
students experiencing the EXSPRT-I approach. That is, students who were
more anxious tended to do better under EXSPRT-I conditions, and students who
were less anxious did worse. Though not central to her study, Powell also found
that test lengths for the EXSPRT-I were significantly shorter than those for
EXSPRT-R.

One of the properties of rule-based (algorithmic) approaches such as the
EXSPRT-1 is that they are deterministic. That is, the item with the highest initial
utility is first selected, and so forth as described above. What this means in
practice is that a determinate pattern of items will be given for a particular
examinee response pattern. The same problem also obtains in the IRT-based
approach which uses the maximum information search and selection procedure, as
well as any other algorithmic method. While the item sequences will differ for
different examinee response patterns—as they should in an adaptive test—the
door is open for possible student cheating. For example, if a pattern of all correct
answers is given to the first five-ten questions, then a mastery decision is typically
reached and that particular test is ended in the EXSPRT-1. While each question
becomes successively more difficult as correct answers are given, it would not
take long for students to discover the determinism inherent in both the EXSPRT-I
and AMT with MISS. In effect, once the word was spread, students would only
need to memorize the answers (o a small number of test questions in order to
achieve mastery. The validity of such results would be seriously jeopardized.’

One of my doctoral students, Susan Huang, has proposed a solution to the
determinacy problem with rule-based item selection procedures. Her solution is
the EXSPRT-RI method. When an examinee begins a test, items are selected at
random (EXSPRT-R) until some predetermined minimum number have been
chosen (e.g., ten questions). If a mastery or nonmastery decision cannot be
confidently reached at that time, then the item selection procedure switches to the

5 This problem does not occur in EXSPRT-R, since items are selected at random; hence the order
is indeterminate.
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intelligent selection method (EXSPRT-I) until a decision can be reached. In effect,
her method is a compromise between EXSPRT-R and -I. With some items being
chosen at random, the entire item pool is more likely to be better represented; and
with some items being chosen intelligently, their difficulty levels are matched to
estimates of student achievement while also maximizing item discrimination.
In a preliminary study comparing EXSPRT-], -R and -RI, Huang has found that
average test lengths for the EXSPRT-RI method lie in between those for the -Iand
-R methods, with EXSPRT-I still resulting in the shortest adaptive tests. While
these are only preliminary results with a relatively small sample of examinees,
Huang’s approach appears to be very promising.

Finally, since the EXSPRT is a relatively new approach to computerized adap-
tive testing, further research studies with a variety of test item pools and examinee
groups are needed.
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