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Item response theory (IRT) has most often 
been used in research on computerized adap- 
tive testing (CAT). Depending on the model 
used, IRT requires between 200 and 1,000 
examinees for estimating item parameters. 
Thus, it is not practical for instructional 
designers to develop their own CAT based on 
the IRT model. Frick improved Wald" s se- 
quential probability ratio test (SPRT) by 
combining it with normative expert systems 
reasoning, referred to as an EXSPRT-based 
CAT. While previous studies were based on 
re-enactments from historical test data, the 
present study is the first to examine how well 
these adaptive methods function in a real- 
time testing situation. Results indicate that 
the EXSPRT-I significantly reduced test 
lengths and was highly accurate in predict- 
ing mastery. EXSPRT is apparently a viable 
and practical alternative to IRT for assessing 
mastery of instructional objectives. 

[]  For many years, instructional developers 
and classroom teachers have used fixed-length, 
paper-and-pendl tests to assess student achieve- 
ment of cognitive learning objectives. With the 
advent of interactive mainframe and minicom- 
puters in the 1970s, it became possible to im- 
plement item response theory in the testing 
environment (Weiss & Kingsbury, 1984). Ques- 
tions arose as how to best use this technol- 
ogy for computerized adaptive testing (CAT) 
and which decision algorithms to use. 

In order for readers who are not ~ with 
CATs to better understand the concept, the 
various forms of CAT are compared and con- 
trasted here. Two examples are provided to 
illustrate how a CAT functions. Described in 
the last section of the article is a study that 
examined the efficiency and accuracy of the 
various CATs discussed. 

The goal of a CAT is to use the least amount 
of questions necessary to determine the level 
of performance of the examinee. Moreover, 
many CATs attempt to tailor a test to an 
individual's achievement level by avoiding 
questions that are extremely easy or difficult 
for a particular examinee and instead choos- 
ing questions that are closer to his or her abil- 
ity level. 

It should be noted that several assumptions 
are made in order to use CATs appropriately. 
First, only one learning objective can be tested 
at a time. This objective can be as narrow or 
wide as desired, but only a unidimensional 
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trait or ability can be assessed by a CAT. In 
other words, the pool of test questions used 
in a CAT should all be measuring the same 
thing. This can be confirmed empirically by 
a factor analysis of the item pool which results 
in a single strong factor. Second, local inde- 
pendence of items is assumed in a CAT. In 
other words, the probability that examinees 
will answer any given question correctly 
should not be affected by the order in which 
the questions are asked. To avoid violating this 
assumption, feedback should not be given to 
students during an adaptive test, nor should 
students be allowed to skip questions. Lastly, 
the questions are selected without replace- 
ment.  Once a question is presented to a 
learner, it is not used again during that par- 
ticular administration of the test to that 
individual. 

Item response theory (IRT) has most often 
been used in research on computerized adap- 
tive testing (Bunderson, Inouye, & Olson, 
1989). IRT-based CATs have been shown to sig- 
nificantly reduce testing time without sacri- 
ricing reliability of measurement  (Weiss & 
Kingsbury, 1984). lRT requires from I to 3 item 
parameters in order to function. These item 
parameters are referred to as a, b, and c. Pa- 
rameter a is the discrimination index. It tells 
us how well item i discriminates among ex- 
aminees at various levels of ability or achieve- 
ment. Parameter b is the difficulty level of item 
i. Parameter c is the lower asymptote for an 
item, sometimes referred to as the "guessing" 
factor. The probability of a correct response 
to a test question is represented by an item 
response function. The value of the probabil- 
ity varies according to the ability of the 
examinee, the difficulty of the question, 
its discriminating capacity, and the lower 
asymptote. 

Item response theory is a complex subject 
which often is not well understood even by 
measurement  experts themselves. Debate 
continues among proponents of competing 
models, which include the Rasch model 
and classical test theory. Only a brief over- 
view of IRT is presented here. Interested 
readers are referred to introductions by Ham- 
bleton, Swaminathan, and Pogers (1991), Frick 
(1990), and Wright (1977). 

Aside from the mathematical and concep- 
tual complexity of item response theory, a prac- 
tical problem with IRT is that it requires that 
a lengthy history of test items be established. 
Before computer adaptive tests can be imple- 
mented, item parameters in LRT should be es- 
timated based on a minimum of 200 to 1,000 
students, depending on the model used (cf., 
Hambleton & Cook, 1983; Hambleton et al., 
1991; Lord, 1983; Weiss & Kingsbury, 1984). 
This requirement is seldom practical for in- 
structor-made tests, although IRT-based CATs 
show considerable promise for large-scale test- 
ing such as military and state-wide tests of stu- 
dent learning achievement. Besides the large 
amount of historical data needed for IRT, the 
complex mathematical formulas involved could 
easily deter its use by instructional designers 
and classroom instructors. 

PRACTICAL ALTERNATIVES TO IRT FOR 
ADAPTIVE TESTING 

Now that many classroom instructors and stu- 
dents have access to powerful desktop com- 
puters, it is possible to do adaptive testing in 
school computer laboratories and in corporate 
training settings. As an alternative to the IRT- 
based approach, Frick (1989, 1990) suggested 
the sequential probability ratio test (SPRT) de- 
veloped by Wald (1947). However, a potential 
limitation of SPRT is that it does not explic- 
itly take item difficulty or discrimination into 
account. An improvement on the SPRT was 
made by combining it with expert systems rea- 
soning. This method, jointly developed by. 
Frick (1992) and Plew (1989), became known 
as EXSPRT (see Frick, 1992, pp. 192-197). 
EXSPRT assigns a weight to each question in 
the item pool, thus allowing the item difficulty 
and discrimination to be used in decision mak- 
ing. A further enhancement was made to the 
EXSPRT method by employing an "intelligent" 
item selection method. This method became 
known as EXSPRT-I (Plew, 1989; Frick, 1992), 
in contrast to EXSPRT-R, in which items are 
chosen randomly. With EXSPRT-I, the next 
item for presentation is chosen based on its 
utility. In other words, the item selected next 
is the one remaining in the item pool which 
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best discriminates between masters and non- 
masters and which is least incompatible with 
the current estimate of the examinee's achieve- 
ment  level. 

Common to SPRT, EXSPRT-I, and EX_SPRT-R 
is the formation of discrete likelihood ratios. 
Instead of assuming a continuum for measure- 
ment of achievement as does IRT, these meth- 
ods instead classify examinees into discrete 
categories, i.e., the achievement metric is nom- 
inal, not ordinal, interval, or ratio. 

In contrast, in item response theory, maxi- 
m u m  likelihood estimation (MLE) is one 
method for making point estimates of an ex- 
aminee's ability or achievement level, which 
is measured on a theta (0) scale. Theta typi- 
cally varies from - 3 to + 3. A 0 value of zero 
indicates an average examinee ability or achieve- 
ment  level on the trait or objective being mea- 
sured. In MLE, the pattern of right and wrong 
answers to specific test questions made by a 
particular examinee is used in conjunction with 
empirically derived a priori test item response 
functions in order to estimate the likelihood 
of that examinee's response pattern for each 
value of 0 (i.e., at each point along the achieve- 
ment  continuum between - 3 and + 3). The 
value of 0 is chosen where that likelihood is 
highest, and hence becomes the estimate of 
that examinee's ability or achievement level. 
There is also an error of measurement asso- 
ciated with that estimate of 0, which is in turn 
dependent on the amount  of information pro- 
vided by the examinee's response pattern and 
the respective test item response functions. 

On  the other hand, in EXSPRT and SPRT 

the likelihood of each discrete category is es- 
0mated based on an examinee's response vec- 
tor and an expert system nile base (described 
below). The category of achievement is chosen 
where that likelihood is highest. This is a very 
important distinction: A category is chosen 
rather than a point on some cont inuum (i.e., 
percentage correct). 

In IRT, a CAT ends when the variance of 
0---and hence the standard error of measure- 
ment at that level of 0---becomes small enough 
to satisfy the decision maker. In EXSPRT and 
SPRT, a CAT ends when the likelihood of a 
category of achievement is sufficiently high 
to satisfy the decision-maker, following the 
logic of Wald (1947) for terminating sequential 
observations. 

The apparent advantages of EXSPRT and 
SPRT for classroom CATs are parsimony and 
efficiency. Since only categorical decisions are 
made (compared to point estimates in IRT), 
an item rule base can be generated from a 
smaller but necessarily representative sample 
of examinees (compared to the large numbers 
required for estimation of a, b, and c parame- 
ters in 11~1"). Moreover, the logic of the EXSPRT 
and SPRT is relatively straightforward and sim- 
ple compared to the complexity of item re- 
sponse theory. We contend that instructors and 
instructional designers will be more likely to 
use a form of CAT that they can understand, 
particularly if it can be shown to be depend- 
able and to reduce overall time spent on stu- 
dent  testing. Table I compares and contrasts 
the characteristics of each type of CAT exam- 
ined in this article. 

TABLE 1 [ ]  Characteristics of the Various CAT Methods 

Item Amount of 
CAT Selection Historical Data 
Method Method Required 

Accounts for 
Item Difficulty and Easy to 

Discrimination Implement 

SPRT Random None 
EXSPRT-R Random Approx. 50 cases 

No Easy 
Yes More 

difficult 
than SPRT 

Yes More 
difficult 
than SPRT 

Yes Very 
difficult 

EXSPRT-I Intelligent Approx. 50 cases 

IRT Intelligent 200 to 1,000 
cases depending 
on model used 
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FORMATION OF EXPERT SYSTEMS RULES 
IN THE SPRT 

A basic logic underlies the discrete likelihood 
estimation procedure that is the foundation 
of SPRT, EXSPRT-I, and EXSPRT-R. Before dis- 
cussing EXSPRT, we address the simpler ap- 
proach: the sequential probability ratio test. 

Suppose we have an item pool for assessing; 
mastery of a single learning objective. For pur- 
poses of illustration, let us assume that past 
experience has shown that students who have 
mastered the objective (masters) score .85 on 
the average, and those who have not (non- 
masters) score .40 (Frick, 1989). From an ex- 
pert systems perspective, these conditions are 
expressed through the use of " I f . . .  then" 
rules (conditional probabilities from a mathe- 
matical/statistical perspective). 

1. If the student is a master, then the proba- 
bility of selecting a question that will be an- 
swered correctly is .85. Restated as conditional 
probabilities: 

Rule 1A: Prob(CorrectlMaster) = .85 
or P(CtM) = .85 

Rule 1B: Prob(IncorrecttMaster) = .15 
or P(~CIM) = .15 

Note that the mathematical notation is stan- 
dard here. P(CIM) literally means the proba- 
bility (P) of a correct response (C) given (I) 
that the student is a master (M). 

2. If the student is a nonmaster, then the prob- 
ability of selecting a question that will be an- 
swered correctly is .40 (Frick, 1989, pp. 96-97): 

Rule 2A: Prob(CorrectlNonmaster) = .40 
or P(CIN) --- .40 

Rule 2B: Prob(IncorrectlNonmaster) = .60 
or P(~CIN) = .60 

These are the four basic types of rules needed 
for the execution of SPRT and its variants. 

During an SPRT-based adaptive test, a ran- 
domly selected item is chosen from the item 
pool and presented to the student.  After 
observing and evaluating the student 's re- 
sponse, a probability ratio is calculated. 

PR= P°mVm(1--V'n)w 
eo~ (1 - P~)W 

where: 

PR = 

Pom -- 
Po. = 
Pm = 

Pn 

r 

w 

probability ratio 
prior probability of mastery 1 
prior probability of nonmastery 
probability of a correct response for 
a master 
probability of a correct response for 
a nonmaster 
number  of correct answers so far 
number of wrong answers so far 

The probability ratio derived is then compared 
to three decision rules. 

SPRT Decision Rule 1. 

If PR ~ (1 - [3)/c~, then choose the mastery hy- 
pothesis and discontinue observations. 

SPRT Decision Rule 2. 

IfPR ~< [3/(1 - ~x), then choose the nonmastery 
hypothesis and discontinue observations. 

SPRT Decision Rule 3. 

If B/(1 - a ) < P R  <(1 - B)/a, then randomly se- 
lect another question and continue observa- 
tions (Frick, 1989). 

The value of a depends  on the decision- 
maker's willingness to erroneously call some- 
one a master who is actually a nonmaster--the 
probability of making a false mastery decision-- 
whereas [3 is the probability of making a false 
nonmastery decision (cf. Wald, 1947). For ex- 
ample, if oc is set to .05 by the decision-maker, 
this means that whenever the SPRT reaches 
a mastery decision, that decision would be ex- 
pected to be wrong in 5 percent of the cases 
in the long run. Or, if [3 is set to .001, this would 
mean that  whenever  the SPRT reaches a 
nonmastery decision, that decision would be 
expected to be wrong in I out of 1,000 cases. 

1Prior probabilities of mastery and nonmastery are set 
to 0.5 if one has no dependable prior information about a 
particular student which can be used, or if one does not 
adopt a Bayesian perspective. 
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In contrast, dur ing conventional criterion- 
referenced testing, the decision-maker typi-  
cally sets a cut-off score, e.g. ,  a s tudent  who  
answers at least 21 of 25 questions correctly 
is considered to be a master. What  most peo- 
ple do  not  realize or  make explicit is the error 
with which such a decision is rendered,  par- 
ticularly when  a given s tudent  scores at or 
near  the cut-off score. When  tests are rela- 
tively short, errors in decisions about  stu- 
dents  whose test scores are near the cut-off 
score may occur 40 to 60 percent  of the time 
(cf. Frick, 1990). 

On  the other  hand,  the SPRT requires the 
decision-maker to specify explicitly in advance 
his or her tolerance for misclassification of mas- 
ters and  nonmasters .  What  this means  is that  
as oL and [3 are decreased,  adaptive tests be- 
come increasingly longer, all other things being 
equal. 

In two empirical studies, Frick (1989) found 
that if the SPRT is used conservatively (a = 13 
= .025, when  P,, = .85 and P ,  = .60), ap-  
proximately  20 test i tems were required to 
reach a mastery or nonmastery decision. When 
SPRT decisions were compared  to decisions 
reached from much longer tests (97 and 85 
i tems each), the error rates observed were ac- 
tually lower than those expected theoretically, 
even when  test i tems varied widely  in their  
difficulty and discriminating power. 

An Example of the SPRT 

Before implement ing SPRT, we must  specify 
how confident we want  to be wi th  the deci- 

sions made (1 - ~ and 1 - 13). I f  we wished  to 
be 95% confident with the overall results of 
SPRT and  were willing to make misclassifica- 
tions of masters and  nonmasters  equally of- 
ten, we would set a --- [~ = .025. 

We mus t  also set the probabil i ty of a cor- 
rect  r e sponse  for mas te r s  (Rule 1A) a n d  
nonmasters  (Rule 2A). Rules 1A and 2A can 
be empirically derived or specifically chosen. 
Let us  assume that  experience with  the i tem 
pool  has revealed that  s tudents  who  are truly 
masters  answer  on the average 85% of the 
questions correctly (Rule 1A), and  that  those 
who  are truly nonmasters  answer  on the av- 
erage 40% of the questions correctly (Rule 2A). 
Thus, we have the following parameters:  

= .025 

[3 = .025 

Rule 1A: Prob(CorrectIMaster) = .85 
or P(OM) = .85 

Rule 1B: Prob(IncorrectlMaster) = .15 
or P(~CIM) = .15 

Rule 2A: Prob(CorrectINonmaster) = .40 
or P(CIN) = .40 

Rule 2B: Prob(IncorrectINonmaster) = .60 
or P ( -CIN )  = .60 

Question 1. A question is randomly  selected 
from the  i tem pool  and  p r e s e n t e d  to the  
student,  who answers it incorrectly. The prob- 
abil i t ies  for each a l ternat ive  us ing  Bayes'  
Theorem would  be derived as shown below. 
Note that Rules 1B and 2B are used in the sec- 
ond  column of probabilities, since the ques- 
tion was answered incorrectly. 

Prior 
Probability Probability Joint Posterior 

Alternative of Alternative IncorrecttAlternative Probability Probability 

Mastery .5 x .15 = .075/Sum = .20 
Nonmastery .5 x .60 = .300/Sum = .80 

Sum = .375 

As can be seen, the probability of nonmastery 
after one question is .80. Using Wald's SPRT 
formula, the probability ratio would be figured 
and the decision rules applied.  In actuality, 

Rules 1 and  2 give us  an  uppe r  and lower 
b o u n d a r y  for Rule 3 to be true.  For this  
example,  as long as the probabil i ty ratio falls 
between39 [(1 - [3)/e0] and  .025641 [,[3/(1 - o0], 
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we continue testing. If the probability ratio be- 
comes less than or equal to .025641, we choose 
nonmastery,  whereas  if the probability ratio 
becomes greater than or equal to 39, we choose 
mastery and stop testing. Here is observation 
I us ing the SPRT formula: 

PR = (.5) .85° ( 1 -  .85) 1 _ •075 

(.5) .40 o (1 - .40) 1 .300 
- -  - . 2 5  

Since .25 is between .025641 and 39, we con- 
t inue testing. Note that  in the Bayesian rep- 
resentat ion above, the ratio of the posterior 
probabilit ies (.20/.80) is equal the SPRT prob- 

ability ratio (.25). These two forms of repre- 
sentation are numerically equivalent, but  the 
Bayesian representat ion may he lp  some read- 
ers better  unders tand  the technique. Thus, 
both  m o d e s  will  be used  in the  examples  
provided.  

Question 2. Another question is randomly cho- 
sen from the item pool and the s tudent  an- 
swers it correctly. The  posterior  probabilities 
for Quest ion 1 now become the prior  proba- 
bilities for Quest ion 2. It is very important  to 
note that Rules 1A and 2A are used  in the sec- 
ond column of probabilities this time, since 
the question was answered correctly. 

Pr/or 
Probability Probability Joint Posterior 

Alternative of Alternative CorrecflAlternative Probability Probability 

Mastery .20 x .85 = .170/Sum = .347 
Nonmastery .80 x .40 = .320/Sum = .653 

Sum = .490 

PR = (.5).851 (1 - .85) 1 _ .06375 

(.5) .401 (1 - .40) 1 .120 
- -  - .53125 

Since the  probabi l i ty  ratio is still be tween  
.025641 and 39, we continue testing. Again, 
note above that  .347L653 = .531. (Also note 
that  the probabili ty ratios may not  be exactly 
the same due  to rounding  errors, since to 
save space the  probabilities in the Bayesian 

representa t ion are rounded  to the nearest  
one- thousandth.)  

Question 3. Another  item is randomly selected 
from the i tem bank and the s tudent  answers 
it incorrectly. Again, the posterior probabilities 
of the last quest ion become the prior  proba- 
bilities for this question• Note that  Rules 1B 
and  2B are used  in the  second  co lumn of 
probabilities. 

Prior 
Probability 

Alternative of Alternative 

Mastery .347 x 
Nonmastery .653 x 

Probability Joint Posterior 
IncorrecflAlternative Probability Probability 

• 15 = .052/Sum = .117 
.60 = .392/Sum = .883 

Sum = .444 

At  this point  in the test, the odds  are about 8 
to I in favor of nonmastery.  Nevertheless,  as 
can be seen from the probabil i ty ratio, a deci- 
sion cannot  yet be confidently made. 

P R  = ( . 5 ) . 8 5 1  (1 - . a s )  2 

(.5) .401 (1 - .40) 2 

= .0095625 
.1328125 

.072 

Quest/on 4. Another question is randomly cho- 
sen from the remaining items in the item bank. 
The s tudent  w h o m  we are t rying to classify 
again answers incorrectly. Updat ing  occurs as 
follows: 
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Prior 
Probability Probability Joint Posterior 

Alternative of Alternative IncorrectlAlternative Probability Probability 

Mastery .117 x .15 = .018/Sum = .032 
Nonmastery .883 x .60 = .530/Sum = .968 

Sum = .548 

53 

It appears that we can choose nonmastery and 
stop here,  since there appears  to be almost  a 
97% probability this is true. However, the prob- 
ability ratio reveals that we still cannot decide 
at  the  a priori confidence level (ct = 13 = .025). 

P R  --  ( . 5 )  (1 - . 85 )  3 

( .5)  .401 (1 - .40) 3 

= .001434375 
.033203125 

.0432 

An  alternative way of viewing the SPRT 
decis ion rules is to examine  the pos te r ior  
probabilities in the Bayesian representat ion.  
Whenever the posterior probability of mastery 
or nonmastery  becomes equal to or greater  
than I - a or I - 13 (.975 here), we can stop the 
test. 

Question 5. Another  quest ion is randomly  se- 
lected from the i tem pool,  and  the s tudent  
again answers incorrectly. Updat ing occurs as 
follows: 

Prior 
Probability Probability Joint Posterior 

Alternative of Alternative IncorrectlAIternative Probability Probability 

Mastery .032 x .15 = .005/Sum = .008 
Nonmastery .968 x .60 = .581/Sum = .992 

Sum = .586 

PR = (.5) .851 (1 - .85) 4 

( .5)  .401 (1 - .40) 4 

= .000215156 
.008300781 

.02592 

The probabil i ty ratio is now less than .025641; 
thus, we choose nonmastery  and stop test- 
ing. Alternatively, note that, at .992, the Bayes- 
ian posterior  probabili ty of the nonmastery  
alternative being true is now greater than .975. 

The above example demonstrates  the un- 
derlying logic for all three SPRT methods  ex- 
amined  by  this study. 

FORMATION OF EXPERT SYSTEMS RULES 
IN THE EXSPRT 

The difference between EXSPRT and SPRT is 
that  a different set of weights is created for 
each quest ion in the item pool  (or different 

rules if a normative expert  systems perspec-  
tive is taken; Frick, 1992). Alternatively, all 
questions are treated equally by SPRT (e.g., 
a master  has an 85% chance at answering any 
question correctly). In EXSPRT, that  probabil-  
ity varies from item to item. Weights are as- 
s igned using a set of four rules for each i tem i 
in the pool.  

Rule i.1: 

Rule i.2: 

Rule i.3: 

Rule i.4: 

If the examinee is a master and  i tem 
i is selected, then the probabil i ty of 
a correct response is P(CiIM). 

If the examinee is a master and i tem 
i is selected, then the probabil i ty of 
an incorrect response is P(-CilM). 

If the examinee is a nonmaster and  
i tem i is selected, then the probabil-  
ity of a correct response is P(CilN). 

If the examinee is a nonmaster and  
item i is selected, then the probability 
of an incorrect response is P(-CilN). 
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The probabilit ies for each of the items are 
created by using historical data collected by 
adminis ter ing the entire i tem pool  to a repre- 
sentative group of approximately 50 or more 
examinees.  Note that it is very important  that 
sufficient numbers of masters and nonmastem--  
roughly 25 in each ca tegory--are  represented 
in this sample, and that the examinees are typ- 
ical of those who  are expected to take the CATs 
in the future. Al though more research needs  
to be done  in this area, Frick (1992) observed 
that when there were fewer than 25 examinees 
in each category, the accuracy of classification 
in that category was less than expected from 
the a priori error rates. 

A decision is now made  as to the cut-off 
score for separat ing masters  and  nonmasters  
(e.g., .85). Using this cut-off score, we divide 
the examinees into two groups,  masters  and  
nonmasters ,  based on their  total test scores. 
For each item in the mastery group,  the fol- 
lowing formulas are appl ied  to determine the 
probabilities of correct and incorrect responses: 

P(C~iM) = (#rim + 1)/(#rim + #wire + 2) [1] 

P(-C~IM) = 1 - P (C~IM) [2] 

where:  

~rim = Number  of persons in the mastery 
group who answered the i tem cor- 
rectly. 

#Wire = Number  of persons in the mastery 
group who  answered the i tem in- 
correctly. 

The same is done  for the nonmastery  group: 

P(CilN) - (#rm + 1)/(#rin + #Win + 2) [3] 

P ( - C i I N )  = 1 - P (CiIN) [4] 

The decision formula for EXSPRT is as follows: 

K 

P ~  II P(CitM)~[1 - P(C~tM)]f 

LR - i= 1 [5] 
K 

P ~  11 P(C~iNy[1 - P(C;IN0f 
i=1  

where: 
LR = likelihood ratio 
Pom = prior probabili ty that the examinee 

is a master  
Pon = prior probabili ty that the examinee 

is a nonmaster  

and: 
s = 1, f = 0 if item i is answered correctly, 

or; 
s = 0, f = I if item i is answered inconectly, 
s = 0, f = 0if  item ihas  notbeen administered. 

The rules for termination of the testing situa- 
tion are the same as above for Wald 's  SPRT. 

An Example of the EXSPRT 

To save space, in this example we use empir- 
ical data from four test items: 1, 23, 38, and  
63. After giving these items to a representa-  
tive group of examinees,  assume that  the rule 
quadruplets  in Table 2 are formed when  .85 
is used as a cut-off score for separat ing mas- 
ters and  nonmasters (see formulas 1-4 above). 

TABLE 2 [ ]  Rule Quadruplets for Items I, 23, 38, and 63 

MASTER NONMASTER 

Correct Incorrect Correct Incorrect 
Rule i.1 Rule i.2 Rule i.3 Rule i.4 

Item I .92 .08 .47 .53 
Item 23 .81 .19 .24 .76 
Item 38 .98 .02 .86 .14 
Item 63 .89 .11 .65 .35 
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Observation 1. Suppose  that  we are us ing  
EXSPRT-R and we want to be 95 percent con- 
fident in our classification of a s tudent  as a 
master or nonmaster. We begin by randomly 
selecting an item from the pool of items for 
measuring mastery of the instructional objec- 

five. Say that we administer randomly selected 
item 63 to this student, about whom we know 

nothing, and that the s tudent  answers it in- 
correctly. Thus, rules 63.2 and 63.4 are rele- 
vant, as shown below: 

Prior 
Probability 

Alternative of Alternative 

Mastery .500 x 
Nonmastery .500 x 

Probability #63 Joint Posterior 
IncorrectlAlternative Probability Probability 

.11 = .055/Sum = .239 

.35 = .175/Sum = .761 
Sum = .230 

Note that we are using the same Bayesian rep- 
resentation as we did above for the SPRT. What 
is different are the numbers  that we insert in  

the second column of probabilities. These 
numbers  depend on the rule quadruplet  as- 
sociated with the item administered and upon 
whether the student answers this question cor- 
rectly or incorrectly. At this time the odds that 
the nonmastery alternative is true, compared 
to mastery, are about 3 to I (.761/.239). If we 

want to be 97.5 percent confident in choos- 
ing one of the alternatives, then we must  con- 
t inue the test. 

Observation 2. We next randomly select item 
23 from the item pool and  administer it to the 
same student,  who answers it correctly. Thus, 
rules 23.1 and 23.3 are relevant, as shown be- 

low. Note also that the above posterior prob- 
abilitites become our new prior probabilities. 

Prior 
Probability Probability #23 Joint Posterior 

Alternative of Alternative CorrecflAlternative Probability Probability 

Mastery .239 x .81 = .194/Sum = .515 
Nonmastery .761 x .24 = .183/Sum = .485 

Sum = .377 

At this point, the two alternatives are about 
equally likely, given that item 63 was missed 

and  item 23 was answered correctly. 

Observation 3. We next randomly select item 1 
from the item pool and administer it to the 
student, who answers it incorrectly. Thus, rules 
1.2 and  1.4 are relevant, as shown below: 

Prior 
Probability 

Alternative of Alternative 

Mastery .515 x 
Nonmastery .485 x 

Probability #01 Joint Posterior 
IncorrectIAlternative Probability Probability 

.08 = .041/Sum = .138 

.53 = .257/Sum = .862 
Sum = .298 

At this point, the odds are slightly more than 
6 to I in favor of nonmastery. 

Observation 4. We next randomly select item 

38 from the item pool and  administer it to the 
student,  who again answers incorrectly. Thus, 
rules 38.2 and  38.4 are relevant, as shown 
below: 
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Pr/or 
Probability 

Alternative of Alternative 

Mastery .138 x 
Nonmastery .862 x 

Probability #38 Joint Posterior 
IncorrectlAlternative Probability Probability 

.02 ffi .003/Sum = .024 

.14 = .121/Sum = .976 
Sum = .124 

After the fourth observation, the posterior 
probability of nonmastery has exceeded 0.975, 
given that item 63 was answered incorrectly, 
item 23 correctly, item I incorrectly, and item 
38 incorrectly. If we had set o~ = 13 = .025 in 
advance of the test, then it would end at this 
time with a nonmastery decision, since the 
nonmas te ry  alternative has a probabili ty 
greater than I - 13. 

The reader should note that if instead of the 
Bayesian representation we had used formula 
5 presented earlier and Wald's three decision 
rules, the result would have been computa- 
tionally equivalent and we would have reached 

the same decision. Formula 5 expresses in a 
succinct mathematical way the products of 
the conditional probabilities based on the ob- 
served response pattern. Given the response 
pattern observed in this example, the likeli- 

hood ratio would be: 

L R =  

Prior Item #63 Item #23 Item #01 Item #38 
Prob. wrong right wrong wrong 

.5(.890 x .111)(.811 x .19°)(.92° x .08%98 ° x .021) 

.5(.65 o x .35~)(.241 x .76%(.470 X .531)(.86 ° x .141) 

.00007128 
- - .0228725 

.00311640 

Since 0.0228725isless than .025641 (13/(1 - a), 
we would  conclude that  this s t u d e n t  is a 
nonmaster  and  stop the test. 

RESEARCH ON SPRT AND EXSPRT 

The above formulas and  decision rules are 

based on Frick's (1991, 1992) work. There are 
two versions of EXSPRT: EXSPRT-R, which ran- 
domly selects the items to present to the ex- 
aminee,  and  EXSPRT-I, which intelligently 
selects the items based on  the examinee's re- 

sponses and the properties of the items that 
maximize discrimination between masters and 

nonmasters and compatibility with the exam- 
inee's achievement level (see Frick, 1990, 1992, 
for further details). 

These me thods  (SPRT, EXSPRT-R, a nd  
EXSPRT-I) can be used in mastery testing sit- 

uations as well as in instructional situations. 
By using them in embedded testing situations, 
one can reduce the time needed for testing 
and allow more time for instructional activi- 

ties. If these methods are shown to be effec- 
tive and  efficient, the wayin  which classroom 
~sting is conducted could be radically changmi. 

They could also offer the teacher more time 
for instruction by reducing the amount  of time 
required for testing. 

Frick (1992) conducted empirical studies of 
the SPRT, EXSPRT-R, and EXSPRT-I which in- 
dicated that the three methods were quite 
accurate in predicting s tudents '  mastery or 
nonmastery of a learning objective. A limita- 
tion of these studies is that they were done ret- 
roactively through re-enactments, rather than 

by controlling the test in real time (Plew, 1989). 
The test re-enactments were carried out by us- 
ing test responses from former administrations 
in which the examinees answered all of the 
items on the test. 2 The algorithm being exam- 

ined selected an  item, and then the evalua- 
tion of the s tudent ' s  response to that item 

21t is important to note that the original tests were ad- 
ministered by computer, that items were randomly selected 
without replacement until the pools were exhausted, and 
that students were not permitted to skip items or change 
prior ansv~rs laterin the test. Re-enactments with the adap- 
tive methods were performed on those test data, not data 
from conventional pape~and-pencil tests in which students 
can change their answers and determine the order in which 
they answer questions. If the latter kind of data had been 
used, the assumption of local independence required by 
the adaptive testing methods would be more likely to be 
violated, since students could search for dues to answer a 
question from other questions on the test. 
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(correct or incorrect) was retrieved from the 
computer file and entered into the algorithm 
as if it had been done in real time. The re- 
enactment continued until a decision could 
be made by the CAT. The decision was then 
compared to the decision reached when the 
test was originally given by administering all 
items. The disadvantage of this procedure is 
that test conditions did not  truly reflect a real 
adaptive testing situation. 

As yet, no studies have tested the accuracy 
and efficiency of the EXSPRT-R and EXSPRT-I 
in real-time testing, i.e., when actually con- 
trolling the test. Hence, there are a number  
of issues that call for further study: How would 
these methods hold up in a "'real world" sit- 
uation? How accurate are the methods when  
the student knows that the length of the test 
will depend on how well he or she does? Are 
some methods more efficient than others? 

METHODOLOGY OF THE PRESENT STUDY 

In the present study, the item bank was one 
developed for a graduate course on computers 
in education. Subjects were volunteers from 
graduate and undergraduate courses at Indi- 
ana University. The 38 subjects were randomly 
assigned to the two groups. Twenty subjects 
were given an adaptive test governed by the 
EXSPRT-R method (random item selection) and 
18 subjects were given an adaptive test gov- 
erned by the EXSPRT-I method (intelligent item 
selection). The 85-item pool contained a vari- 
ety of true/false, multiple-choice, and fill-in- 
the-blank questions. Subjects in the EXSPRT-I 
group had a mean score of 60.78 on the test, 
with a standard deviation of 17.80. The EX- 
SPRT-R group had a mean score of 61.6, with 
a standard deviation of 13.92. 

Both tests operated in the following man- 
ner. The student was informed that she or he 
would be taking two tests, an adaptive test, 
where the length of the test would depend 
on his or her performance, and a traditional 
test. The student was then asked to complete 
both tests. Actually only one test was given, 
but it appeared to the student that two tests 
were administered. 

The first test continued until a mastery or 
nonmastery  decision could be made using 

EXSPRT. When a decision was made as to mas- 
tery or nonmastery, the student was informed. 
The computer also recorded in a file the deci- 
sion reached and when it was made. The sec- 
ond test consisted of the remaining items, so 
that the student would answer all 85 questions. 
The item selection strategy used for the first 
test (i.e., random or intelligent selection) con- 
tinued throughout  the second test. Remain- 
ing items were given so that a comparison 
could be made between the adaptive decision 
and the conventional test decision. 

A second feature of the test was that the 
SPRT algorithm was executed by the computer 
parallel to the EXSPRT-R (without informing 
the student). When the SPRT method arrived 
at a decision, the computer recorded when  
the decision occurred. The SPRT decision did 
not affect the administration of the test. This 
was done so that information could be collected 
on how well the SPRT performed compared 
to EXSPRT and the traditional test. This de- 
sign was used so that it would not be neces- 
sary to administer the test to a third group. 
The SPRT algorithm could not run parallel to 
EXSPRT-I because the fact that the items were 
chosen intelligently would violate the assump- 
tion of random selection for SPRT. 

Because we wanted to be 98% confident 
about the adaptive decisions, the alpha and 
beta levels for all algorithms were set at .01. 
The cut-off levels for the SPRT method were 
derived from the historical data collected (n 
= 185). 3 Rather than using the traditional lev- 
els of .60 for nonmasters and .85 for masters, 
the empirically derived levels used were .63 
for nonmasters and .90 for masters. The prior 
probability of being a master was set at .50 
for all methods upon entrance into the test. 
EXSPRT rules were also based on these past  
185 cases, as well as Rasch estimates of item 
diffculty (cf. Wright, 1977). 

After data were collected on the 38 students 
in the present study, comparisons were made 
of EXSPRT-I, EXSPRT-R, and SPRT with re- 
enactments using the IRT-based procedure de- 
veloped by Weiss and Kingsbury (1984), called 

~aese historical data were obtained from earlier stud- 
ies using the same test with graduates and undergradu- 
ates in beginning computer courses in education (Frick, 
1989; Powell, 1991). 
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Adaptive Mastery Testing (AMT). During the 
re-enactments on the previously recorded item 
responses, the order in which the items were 
chosen was based on their maximum infor- 
mation search procedure, and 0 estimates were 
Bayesian (following Owen, 1975). AMT test 
re-enactments ended when mastery or non- 
mastery could be decided at the .98 confidence 
interval, which is comparable to setting a and 
13 to .01 in the EXSPRT and SPRT discrete like- 
lihood procedure. 

Finally, 0 and its variance were estimated 
from responses to all items on the test for each 
examinee using both maximum likelihood and 
Bayesian approaches. The maximum likelihood 
estimate and Bayesian procedures resulted in 
virtually identical 0s and standard errors for 
each examinee on the whole 85-item test. Also, 
IRT-based total test decisions (mastery, non- 
mastery, and no decision) were in 100% agree- 
ment with those reached from a conventional 
proportion correct metric with a .85 cut-off 
score. Both methods of making decisions from 
the total test item pool used a .98 confidence 
interval. If that interval did not contain the 
cut-off (1.422 on the 0 scale, .85 on the pro- 
portion correct metric), then a mastery or 
nonmastery decision was made accordingly. 
If the confidence interval did include the re- 
spective cut-off, then no decision could be 
reached with the .98 confidence interval. 

RESULTS 

CAT Test Lengths 

Average test lengths and standard deviations 
for the various CATs are reported in Table 3. 

Independent t tests were conducted for the 
pairwise comparisons of adaptive methods in 
Group 1 versus Group 2 (e.g., EXSPRT-I in 
Group 1 vs. EXSPRT-R in Group 2), whereas 
correlated t tests were conducted for pairwise 
comparisons of means from different adap- 
tive methods within groups (e.g., EXSPRT-I vs. 
AMT in Group 1, and EXSPRT-R vs. SPRT in 
Group 2). To be conservative, the type I error 
rate was set to .005 for individual pairwise con- 
trasts, since these were nonorthogonal, a p0s- 
teriori comparisons. Thus, the overall Type I 
error rate for the 9 contrasts performed was 

TABLE 3 [] Average Numbersof Items Required 
to Make Mastery and Nonmastery Decisions 
by the Various CAT Methods 

Mean SD 

Group I (n = 18) EXSPRT-I 13.4 15.1 
AMT 17.7 25.5 

Group 2 (n = 20) EXSPRT-R 26.9 20.0 
SPRT 23.4 13.0 
AMT 20.0 28.0 

equal to or less than 1 - (1 - .005)  9, w h i c h  is  
slightly less than .05 for the overall experiment 
(see Kirk, 1982). The AMT method in Group 
1 was compared to EXSPRT-I only, whereas 
all other pairwise contrasts were tested. 

EXSPRT-I tests were about half as long as 
EXSPRT-R tests, and the difference was sta- 
tisticaUy significant. There were no significant 
differences found among any of the remain- 
ing pairwise comparisons of mean test lengths 
in the various adaptive testing methods. 

The reader is reminded that the AMT was 
done through re-enactments, not in real time 
as were EXSPRT-I, EXSPRT-R, and SPRT. This 
is admittedly a somewhat messy design, but 
the reader should also remember that the main 
purpose was to see how well EXSPRT would 
work in actual classroom testing situations, 
rather than through re-enactments as had been 
studied in the past by Frick (1989, 1992), Luk 
(1991), Plew (1989), and Powell (1991). FXSPRT-I 
test lengths tended to be significantly shorter 
than EXSPRT-R tests in most of the re-enact- 
ment studies. EXSPRT-R and AMT CATs have 
tended to be similar in length. With some tests, 
EXSPRT-I has been significantly shorter than 
AMT, and with other tests it has not. Lengths 
of adaptive tests depend on a number of fac- 
tors in addition to the CAT method used (see 
Frick, 1990, 1992). 

The fact that EXSPRT-I was significantly 
shorter than EXSPRT-R in the present study 
is consistent with most past studies. Most im- 
portantly, the pattern observed in the pres- 
ent study, in which these adaptive methods 
were in actual classroom settings and in real 
time, is consistent with patterns observed in 
past studies which used re-enactments of 
adaptive methods. This consistency is teas- 
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suring in that it adds  credence to the predic- 
tive validity of the re-enactment studies. Those 
past  s tudies are analogous to wind- tunnel  ex- 
per iments  with model  airplanes conducted to 
predict actual flight behavior of real airplanes. 

CAT Decision Accuracies 

Quest ions  that arise in adaptive testing are: 
How trustworthy are the decisions reached by 
an adaptive test? How do those decisions com- 
pare with decisions that would be arrived at 
by a more  lengthy (and presumably  more de- 
pendable)  measuremen t  procedure? In the 
present  situation, we can compare the deci- 
sions reached by the CATs with those reached 
by  the total test  i tem pool,  since the latter is 
p resumably  more dependable .  

Another  question is: How should we make 
decisions on the basis of the total test results? 
There are three different ways we could make 
decisions based on the entire 85-item pool: 

1. discrete l ikelihood estimation with Type I 
and II errors (a and [3 errors, which are used 
in EXSPRT); 

2. conventional proportion correct with a con- 
fidence interval based on a s tandard  error 
of measurement ;  and  

3. IRT 0 est imation with  a s tandard error of 
measurement  based  on  test information at 
that  0 level. 

We can then compare the decisions reached 
by the different CAT approaches  to see how 
well they agree  wi th  these  three  different  
methods  of classification based on total test  
results. Since in this s tudy  the IRT and  con- 
ventional total test decisions agreed perfectly, 
they are combined in Table 4 (3 columns at  
right) for purposes of comparison with the CAT 
decisions. 

In Table 4, the agreement  between total test 
decisions and the various CAT methods  is re- 
ported.  This is a set of eight 3 x 3 contingency 
tables, where  the 3 main diagonal e lements  
in each represent  agreement ,  and  the 6 off- 
diagonal  e lements  indicate disagreement .  

The 3 columns of frequencies at the left of 
Table 4 indicate agreement  between those test 
decisions reached by the discrete l ikelihood 
method  on the 85-item test, and  the test de-  
cisions reached by each of the CATs. For ex- 
ample ,  in Group  1 there  were  6 to ta l - tes t  
mastery decisions out  of 18 cases. In all 6 of 
these cases, the EXSPRT-I had  also reached a 
mastery decision--perfect  agreement.  The to- 
tal test indicated 8 nonmasters .  The EXSPRT-I 
also concluded nonmastery  in all 8 of those 

TABLE 4 [] Agreement between Computer Adaptive Test 
Decisions and Decisions Based on Total Test Results 

CAT DECISIONS 

Decisions Based on Total Test Results 

DISCRETE IRT AND 
LIKELIHOOD CONVENTIONAL 
((x = [3 = .01) (.98C. I.) 

M NM ND M NM ND 

EXSPRT-I 
(n = 18) 

EXSPRT-R 
(n = 20) 

SPRT 
(Same S" s 
as EXSPRT-R) 

AMT 
(Same S" s 
as EXSPRT-I & -R 
(n = 38) 

M 
NM 
ND 

M 
NM 
ND 

M 
NM 
ND 

M 
NM 
ND 

6 0 1 3 0 4 
0 8 3 0 8 3 
0 0 0 0 0 0 

9 0 0 1 0 8 
0 10 0 0 10 0 
0 0 1 0 1 0 

8 0 0 1 0 7 
1 10 1 0 11 1 
0 0 0 0 0 0 

11 0 0 4 0 7 
2 18 3 0 19 4 
2 0 2 0 0 4 

Key: M = Mastery, NM = Nonmastery, ND = No Decision 
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cases- -a lso  perfect agreement.  On  the total 
test under  the  discrete method,  the remain- 
ing 4 cases in Group I could not  be classified 
dear ly  as masters or nonmasters (no decision). 
The EXSPRT-I classified one of those persons  
incorrectly as a master, and  3 as nonmasters ,  
for a total of 4 disagreements.  

The IRT/Conventional methods  of making 
total test decisions are compared  to the CAT 
decisions at the right of table 4. 4 The same 18 
cases in Group  I are compared  to EXSPRT-I 
when  this total test  decision method  is used.  
Notice that  the IRT/Conventional total test  
could only make clear mastery decisions in 3 
cases, compared  to 6 when  the discrete like- 
l ihood approach was used on the whole  test. 
These 3 cases were also classified as masters 
by EXSPKr-I. The IRT/Conventional method  
made  8 nonmastery  decisions, as d id  the dis- 
crete likelihood method, and these 8 were also 
classif ied as nonmas te r s  by  the EXSPRT-I 
method.  The remaining 7 cases could not  be 
classified clearly as masters or nonmasters  by 
the IRT/Conventional method  on the whole 
test. The EXSPRT-I classified 4 of these no- 
decision cases as masters and 3 as nonmasters. 
Notice that  there were a total of 7 disagree- 
ments  be tween  IRT/Conventional total test  
decisions and EXSPRT-I CAT decisions, in con- 
trast to a total of 4 disagreements  when  the 
discrete likelihood method was used for total 
test decisions. 

The remainder  of Table 4 can be similarly 
interpreted.  For example,  when  EXSPRT-R is 
compared  to the discrete l ikelihood total test  
decision method,  there was only one disagree- 
ment  in the 20 cases in Group 2. However, 
when  compared  to the IRT/Conventional ap- 
proach, there were a total of 9 disagreements .  

What  may be confusing in Table 4 is that 
the same 20 cases in Group 2 that  were ex- 
posed to the EXSPRT-R CAT method could also 
be categorized by the SPRT method.  Finally, 
all cases in both groups (n = 18 + 20 = 38) 
were retroactively categorized by the IRT-based 
AMT CAT method by means of re-enactments 

41n the conventional proportion correct metric, the cut- 
off score is .85. This corresponds to a 0c = 1.422, as deter- 
mined from the test response function for the one-parameter 
IRT or Rasch model. 

based on the recorded right and  wrong an- 
swers to test questions when  originally taken 
under  ei ther EXSPRT-I or  EXSPRT-R condi- 
tions. For example, under  the discrete likeli- 
hood total test  approach,  the 5 no-decisions 
(0 + 3 + 2), when compared to the AMT CAT, 
are the same 5 no-decisions when  compared  
to the EXSPRT-I and EXSPRT-R (1 + 3 + 0 + 
0 + 0 + 1 ) .  

As can be seen from Table 4, it was not  pos- 
sible under  the lRT/Conventional total test ap- 
proach to make clear mastery and  nonmastery 
decisions at the .98 confidence interval in many 
of the cases (4 + 3 + 8 = 7 + 4 + 4 = 15 
no-decisions out  of 38 cases). On the other 
hand,  there were one-third as many ambigu- 
ous outcomes in the discrete case (5 out  of 
38) using EXSPRT likelihood est imation pro- 
cedures (see formula 5). How can this be? If 
we think in terms of a continuum of achieve- 
ment,  a cut-off and a confidence interval, it 
would appear  that we can be less certain more 
often (given the same test results), compared 
to making decisions when  using discrete cate- 
gories as in EXSPRT. The trade-off appears  to 
be this: While the EXSPKF is less "precise" 
in that  the choices are mastery  versus non- 
mastery as opposed  to est imating some point  
on a continuum, most  of the time we can be 
more certain about our conclusions when given 
the same test results. 

It can be seen that, when  clear mastery or 
nonmastery decisions could be reached by the 
total test, all of the CAT methods  tended to 
reach the same decisions. As mentioned above, 
both the IRT and conventional 85-item tests 
were unable to reach clear decisions with a 
.98 confidence interval in 15 out  of 38 cases, 
whereas  this occurred only 5 times when dis- 
crete l ikel ihoods were based  on the ent ire  
85-item pool.  AMT adapt ive  test decisions 
tended to agree less well wi th  total test deci- 
sions based  on discrete likelihoods (2 + 2 + 
3 + 2 = 9 disagreements  out  of 38). 

DISCUSSION 

As can be seen from examining the data, all 
computer ized  adapt ive  me thods  s t u d i e d - -  
SPRT, EXSPRT-I, EXSPRT-R, and AMT--re-  
duced the amount  of t ime needed  for the 
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test. Between one-third and one-fifth of the 
item pool was needed to reach a CAT deci- 
sion. EXSPRT-I test lengths were significantly 
shorter than EXSPRF-R. None of the other CAT 
methods resulted in significantly different test 
lengths. 

It should also be noted that SPRT, EXSPRT-I, 
and EXSPRT-R methods resulted in categori- 
zations that agreed almost perfectly with to- 
tal test results when decisions were not forced 
(i.e., could be made with oL and ~ set to .01). 
The SPRT method made one false decision 
when compared to the total test discrete like- 
lihood, but it should be noted that it was made 
in the conservative direction: calling a master 
a nonmaster. In the EXSPRT-I group there were 
4 no-decisions on the total test, whereas the 
CAT reached mastery and nonmastery deci- 
sions on those 4 cases. Why did this happen? 
The most obvious explanation is that these 
were borderline cases, that is, students who 
were not clearly classifiable as masters or 
nonmasters on the total test. Frick (1990) dem- 
onstrated that more decision errors will oc- 
cur when the distribution of examinees is 
clustered near the cut-off, regardless of the 
adaptive testing methodology used. 

It is noteworthy that the SPRT performed 
about as well as both AMT and EXSPRT ap- 
proaches. This is significant in that the SPRT 
requires no prior test administrations in or- 
der to estimate item parameters or a statisti- 
cal rule base, as do the AMT and EXSPI~. Of 
course, this observation must be tempered by 
the facts that it occurred with a highly reli- 
able test (Cronbach a = .94); that the deci- 
sion error rates were set very low (.01 for false 
mastery and nonmastery decisions); and that 
the mastery and nonmastery levels were not 
too far apart (.90 versus .63). 

WHICH CAT METHOD IS BEST? 

Since SPRT, EXSPRT, and AMT all appear to 
be viable computerized adaptive testing meth- 
odologies, on what basis can one choose 
among them? 

Perhaps the first consideration is whether 
categorical classifications are desired, or 
whether it is important to estimate a student's 

achievement level at a precise point on some 
continuum. Since SPRT and EXSPRT are not 
intended for precise estimates of achievement 
levels, it would appear that the IRr-based adap- 
tive mastery testing method (AMT) would be 
the best choice for the latter situation. How- 
ever, there is a very steep price to pay for us- 
ing the AMT. If the three-parameter model is 
used, then a minimum of 1,000 or more ex- 
aminees need to be tested in advance for item 
parameter estimation. This requirement is 
likely to be viewed as highly impractical by 
classroom instructors, trainers, and develop- 
ers of mastery tests used in computer-based 
instruction, and by instructional designers in 
general. 

If categorical dassifications such as mastery 
and nonmastery are sufficient for the decision- 
maker, then the EXSPRT appears to be the best 
choice, since it requires a much smaller a pri- 
or/ sample for developing an item rule base 
which is used for discrete likelihood estima- 
tion during an adaptive test. The price to pay 
here is that the initial sample must be repre- 
sentative of students for whom the CAT is 
eventually intended, which means roughly 25 
or more examinees per discrete category. If ef- 
fidency is important as well, then the EXSPRT-I 
would appear to be the best choice for cate- 
gorical dassifications, since it results in shorter 
tests than EXSPRT-R. On the other hand, if it 
is important that the items selected be repre- 
sentative of the content in the total pool, then 
EXSPRT-R would be the best choice, since 
items are chosen at random. EXSPRT-I may 
result in inadequate content coverage (as does 
the AMT) because items are selected based 
on their statistical properties and not on their 
content. 

A compromise between content coverage 
and efficiency may be achieved by combining 
EXSPRT-R and EXSPRT-I. For example, a 
minimum test length can be specified (e.g., 
15 questions) and the EXSPRT-R method 
used. Then, if no decision can be reached with 
EXSPRT-R, the CAT can switch to the EXSPRT-I 
method. This mixed approach also has the ad- 
vantage that it is more difficult for students 
to "cheat" by memorizing answers to a small 
set of highly discriminating test items that are 
likely to be chosen early by the EXSPRT-I ap- 
proach. It is possible for students to memo- 
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#~ze the first few items since the system always 
begins the exam with the same question, given 
a prior probability of mastery set at .50. If the 
student answers the first question correctly, 
the system always selects the same second 
question. If the second question is answered 
correctly, the system always selects the same 
third question. This pattern continues, so stu- 
dents could discover the pattern and learn the 
answers to only the first 5 to 8 questions and 
be classified a master. The validity of EXSPRT-I 
would be compromised in this "cheat ing"  
situation. 

Finally, if no advance data are available on 
item properties and categorical decisions will 
suffice, then the SPRT is a good choice if used 
conservatively. That is, mastery and non-  
mastery levels should not  be set too far apart 
(.85 and .60 work reasonably well), and a pri- 
or~ error rates must be kept small (.025 or less). 

It is important to remember that EXSPRT 
and SPRT are appropriate for testing mastery 
of a single learning objective. If multiple ob- 
jectives are of concern, then separate CATs 
should be conducted for each objective. The 
overall outcome is not a single score but a list 
of objectives that have and have not been mas- 
tered by a given student. This can be made 
transparent to students so that they perceive 
one test rather than a series of subtests, and 
feedback on test results can be suspended un- 
til decisions are reached on all objectives being 
assessed. 

In conclusion, computerized adaptive tests 
can significantly reduce testing time in corpo- 
rate education and training settings. Reduced 
testing time with no loss of reliability means 
decreased training costs, all other things being 
equal. In public school classrooms, CATs have 
the potential to support self-paced mastery 
learning and individualized instruction, in con- 
trast to traditional group-paced instruction in 
lock-step grade levels. [ ]  

R. Edwin Welch is with the Learning Support 
Center, Taylor University, in Upland, Indiana. 
Theodore W. Frick is with the Department of 
Instructional Systems Technology of the School of 
Education at Indiana University, Bloomington. 
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