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ABSTRACT

One of the potential gdvantages of computer-based instruction {CBI) is indi-
vidualization of instruction. However, this goal has not been fully realized in
practice, due largely to limitations of natural langusge understanding and to
combinatorial explosion. It is nonetheless possible to develop CBI programs
which can adapt to students, depending on their performance, by adjusting
the length of computer-guided practice exercises and computer-based tests.
The validity of this approach is supported empirically. The number of ques-
tions can be significantly reduced for many individuals, while mastery and
nonmastery decisions remain highly accurate.

In this article I demonstrate how Bayesian reasoning can be used to adjust the
length of computer-guided practice exercises and computer-based tests, when
the goal is to make mastery or nonmastery decisions. Next, results of an empir-
ical study are presented which support the validity of this approach. Finally,
an cxtension of this approach is considered when previous empirical informa-
tion about the questions themselves is available.

THE PROBLEM OF INDIVIDUALIZATION
IN COMPUTER-BASED INSTRUCTION

One of the potential advantages of computer-based instruction (CBI) is
individualization of instruction. Individualization implies tailoring the events
of instruction to fit the particular circumstances of a given student. Yet most
extant CBI is only minimally adaptive, if at all [1]. For example, most computer-
based tutorials are basically linear, where all students follow essentially the same
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path of instruction, or they are menu driven, where students are free to choose
which section to do next. In the latter case, once a section is chosen from a
menu, the section itself will usually be linear in nature—though students may be
able to page forwards and backwards within the section or escape to a menu.
Alternatively, a section of questions or problems may be presented according to
level of difficulty, or in a random order for the sake of variety.

It is true that minimal but useful adaptation can be achieved by anticipating
specific incorrect responses to questions and providing contingent feedback or
hints to help a student answer correctly. Remediation strategies may also be
employed for anticipated misunderstandings, with additional practice provided
for areas of particular difficulty. It is also true that many computer games and
simulations will usually behave differently when user input is varied.

These latter two approaches to CBI tend to be more adaptive than computer-
based tutorials, drills, and tests, since algorithms underlying games and simula-
tions normally utilize a set of variables whose values depend on student
performance and which affect the program’s behavior.

However, two interrelated problems currently prevent CBI programs from
fully adapting to students during instruction as do human teachers: 1) computer
programs presently cannot be written which adequately understand natural
language: and 2) the possible number of instructional paths necessary to indi-
vidualize instruction for a wide variety of learners results in a combinatorial
explosion of instructional frames to be developed.

Matural language understanding is currently a significant obstacle to intelligent
CBI, though some success has been achieved in very narrow and well-defined
content domains [2-5]. Thus, the CBI designer presently faces the practical con-
straint that a limited number of presentation, question-and-feedback, practice,
and testing frames can be developed for each instructional objective. The devel-
oper is also constrained by the type of student responses that can be adequately
judged by a CBI program—i.e., alternative-choice and brief constructed responses.
It is currently not possible, due primarily to the problem of natural language
understanding, for a CBI program to react intelligently to unanticipated responses
and questions asked by students.

A CURRENTLY ACHIEVABLE
FORM OF ADAPTATION IN CBI

In what other ways, then, can a CBI program realistically adapt to individual
differences in students? One practical way a CBI program can adapt is by decid-
ing, depending on student performance, when to terminate a mastery test, a set
of embedded questions, or a drill/practice session. All students need not be pre-
sented with all questions in order to reach a conclusion about whether or not
their learning is sufficient. Those who perform extremely well or extremely
poarly early in the situation are likely to continue doing so, and thus the situation
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may be ended without requiring them to do all items. Those who have done well
can move on to the next objective. Those who have done poorly can repeat
instructional sections or seek additional assistance outside the CBI program.

There are various ways that such mastery or nonmastery decisions can be
made [6-10]. These methods use statistical decision algorithms, and result in
shortened tests or practice situations for many individuals. After an item is
presented to a student and his or her response is evaluated as either correct or
not, the evidence collected thus far is considered in light of some criteria of
acceptability. If these criteria are not met, the test or practice situation continues
with the selection and administration of a further question. If the criteria are
met, the situation is terminated with a mastery or nonmastery decision. Most of
these decision methodologies are essentially Bayesian in nature, but differ in the
specific ways that evidence is weighed and combined with prior information and
in methods of item selection.

A straightforward and practical application of Bayesian reasoning is presented
below. When combined with additional rules for choosing one outcome over
another, it will be shown that Bayves" Theorem can be extended to become, in
essence, a sequential probability ratio test (SPRT). The SPRT was developed by
Wald [11], though not explicitly presented in a Bayesian framework at that
time, nor developed for criterion-referenced testing per se.

AN EXAMPLE OF BAYESIAN
REASONING DURING TESTING

Suppose that there is a poolof test items which match a particular instructional
objective and that our goal is to decide whether or not a student has mastered
that objective [12]. A test question matches an objective if the performance
required to answer correctly is the same as that stated in the objective. This
implies that one who has mastered the objective is very likely to answer such a
question correctly, whereas one who has not mastered the objective is much less
likely to answer correctly. Suppose further that past experience with the test
item pool has revealed that students who are indeed masters of the objective
tend to answer 85 percent of the questions correctly and that those who are
nonmasters score an average of 40 percent,

We can express our knowledge by means of “If . . _ | then . .." rules:

1. If the student is a master, then the probability of selecting a question that
will be answered correctly is .85, Re-stated as conditional probabilities:

Rule 14: Prob(Correct|Master) = .83
Rule 1B: Prob{Incorrect |Master) = .15

2. If the student is a nonmaster, then the probability of selecting a question that
will be answered correctly is .40.
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Rule 24: Prob(Correct| Nonmaster) = .40
Rule 2B:  Prob(Incorrect|Nonmaster) = .60

The alternative choices here are mastery and nonmastery, and the aim is to
collect information by administering test items to decide which of these alterna-
tives is most likely to be true for a particular student at some point in time.

Suppose further that we have no prior information about a particular student
when the test is begun. With no prior information, the alternatives are equally
likely—ie., Prior Prob{Mastery) = Prior Prob(Nonmastery) = 0.50. We now pro-
ceed by making observations in this simulated example.

Observation 1

We randomly select a test item for measuring mastery of the current instruc-
tional objective and give it to this student, who answers it incorrectly. Using
Bayes’ Theorem, the posterior probabilities of the alternatives for this student
are derived as follows [13]:

Priar .
FProbability Probability Joint Posterfor
Alternarive  of Alternative  Incorrect|Alternacive  Probability  Probability
Mastery 5 X 15 = 075 [Sum= 20
Nonmastery .5 X 60 = 300 [Sum= .80

Sum= .375

It can be seen that the prior probability of each alternative is multiplied by the
respective probability of the observation, given that the alternative is true.!
Multiplying the prior probability by the conditional probability results in a joint
probability for each alternative. Normalization of the joint probabilities yields
the posterior probabilities of the alternatives. Normalization is accomplished by
summing the joint probabilities and then dividing each by that sum. Thus, the
sum of the posterior probabilities is always equal to one. At this point, following
the observation of an incorrect response, the probability of nonmastery is .80,
four times as likely as mastery,

Dbservation 2

Suppose that we continue observing by randomly selecting another question
and administer it to this student, who correctly answers it, Bayes' formula is
teapplied, only this time the above posterior probabilites of the alternatives
become the new prior probabilities:

! Since the student missed the question, we use the conditional probabilities from rules
I8 and 28. IF answered correctly, we would have used rules /4 and 24 —see Observation 2.
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Prior
Probability Probability Joint Fogterior
Alternative  of Alternative  Correct jAlternative  Probability  Probability
Mastery .20 X 85 = 170 [Sum = 347
Nonmastery B0 * 40 = 320 [Sum= G653

Sum = 490

Note that in the third column the conditional probability of selecting a question
that is answered correctly is used this time for each alternative (rules /4 and
2A —since we just observed a correct response). Further note that now the odds
of nonmastery to mastery have dropped to about two to one, having observed
one correct and one incorrect response thus far,

Observation 3

We continue observing by selecting and administering another item, which
this student answers incorrectly, As before, we update by using the most recent
posterior probabilities of the alternatives as the new priors:

FPriov
Probability Probability Joint Posterior
Alternative  of Alternative  Incorrect|Alternative  Probability  Probability

052 Sum= (117
392 /Sum= _EE3
Sum = _d4d4d

Mastery 347 x A5
Monmastery 653 X 60

At this point the odds of nonmastery to mastery are about eight to one, given
the observation of two questions answered incorrectly and one correctly, One
might wonder how many observations are necessary to confidently choose one
of the alternatives. This problem will be addressed below. For the time being, let
us continue making observations.

Observation 4

Another test question is sampled, and again the student for whom we are
attempting to decide either mastery or nonmastery answers incorrectly. Asbefore:

Friovr
Probability FProbability Sfoint Pasterior
Alternative  of Alternative  Incorrect|Alternative  Probability  Frobability
Mastery 17 x 15 = 018 [Sum= 032
MNonmastery BE3 X .60 = 530 [Sum= | 9&8

Sum.= 548
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MNow the nonmastery alternative is about thirty times as likely as the mastery
alternative. Should we stop? Let us take one more observation, the reason for
which will become evident subsequently.

Observation 5

A further test item is randomly selected and administered. The student in
question also misses this one. We update using Bayes' Theorem as before:

Frior
Probability Probability Joint Posterior
Alternative  of Alrernative  Correct/Alternative Frobability  Probability
Mastery 032 X .15 = 005 [Sum= 008
Nonmastery L9638 x .60 S5B1 fSum= 992

Sum= .586
At this point the nonmastery alternative is highly probable (.992), about 125
times as likely as the mastery alternative. Recall that we began with a flat prior
distribution, meaning that each alternative was equally likely. After making five
sequential observations, where four questions were answered incorrectly and one
correctly, the posterior probabilities of the alternatives have changed markedly
through successive applications of Bayes’ Theorem—i.e., through Bayesian
reasoning.

This Bayesian approach to updating probabilities of discrete alternatives on
the basis of new evidence appears to be so simple and straightforward that one
may immediately wonder what assumptions are necessary to use it appropriately.

BAYES' THEOREM

If two or more discrete alternatives (A;’s) are mutually exclusive and exhaus-
tive, if we know or can estimate the prior probability of each alternative
[Pa(Aj)], and if we have made a new observation (X) and know the conditional
probability of that kind of observation under each alternative [P(X|4;], then
we can determine the posterior probability of each alternative [P(A;I(X)]
according to Bayves’ Theorem [13]:

= Po(AJP(XA)

Formula (1) expresses more compactly what was illustrated in the above
examples in a tabular format.

Bayes’ Theorem can also be used when there are more than two discrete
alternatives. It can further be uwsed when the alternatives are continuous. The

P(A;IX) =
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basic concept obtains but the mathematics are more complicated, and requires
the combination of a continuous prior probability distribution with a current
observation or set of observations to yield a continuous posterior probability
distribution. And, instead of referring to the probability of a discrete alternative,
we indicate the probability of a range of alternatives.

It also follows that the posterior probability of an alternative is proportional
to its prior probability multiplied by the likelihood of the observation if the
alternative is true. Thus, if we are taking a sequence of observations, it is not
necessary to normalize to obtain the posterior probabilities until after the last
observation is made. After the five observations in the above example, the
posterior probability of the mastery alternative is proportional to .5 X (15 X
85X .15 X .15 % .15, which is equivalent to .5 X .85 X .15*, or .0002151.
Similarly, the posterior probability of the nonmastery alternative in the above
example is proportional to .5 X 40" X .60%, or 02592, We can then normalize
after the last observation by dividing .0002151 by the sum (0002151 +.02592),
yielding a posterior probability for the mastery alternative which is the same as
after Observation 5 above (= .008). The normalized posterior probability for the
nonmastery alternative is .02392/(.0002151 + .02592) = 992, as before. To
summarize, using a tabular format:

Frior
Probability FProbability Joint Posterior
Alternative  of Alternative  Sequence |Alternative  Probability  FProbability
Mastery Rl X (.8513(.15%) = 0002151 /Sum = 008
Nonmastery 5 X (.40 .60%) 0259200  /Sum =.992

W

Sum= 0261351

If the observations are independent, then the posterior probability of an
alternative is proportional to the prior probability multiplied by the gquantity,
[pT(1 = p)*]: where p is the probahility of selecting a guestion that will be
answered correctly under the alternative, r is the number of guestions answered
correctly (right), and w is the number answered incorrectly (wrong). In this
context, observations are independent if the probability of selecting an item
which will be answered correctly by a student, when an alternative is true, does
not differ depending on which guestions may have been answered previously.
This is often referred to as the assumption of Jocal independence and will be
discussed in greater detail below.

THE SEQUENTIAL PROBABILITY
RATIO TEST (SPRT)

Abraham Wald developed the SPRT as a decision methodology for choosing
between two discrete hypotheses when observations are made sequentially [11].
This method has been widely applied in quality control of manufactured
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products—e.g., to decide whether to accept or reject a batch of goods. The major
advantage of the SPRT is a sipnificant reduction in the average sample size
necessary to reach a decision, compared to conventional statistical tests which
are performed after a group of observations have been obtained. The SPRT is
applied after each observation. Sampling ends in the SPRT when one of the
alternatives can be chosen with a level of confidence that depends on a priori
decision error rates. The SPRT decision rules are as follows:

Rule 51. 1If the ratio of the posterior probabilities of the alternatives is greater
than or equal to (1 — @)/e, then choose the first alternative.

Rule 52. 1 the ratio of the posterior probabilities of the two alternatives is
less than or equal to #/(1 — «), then choose the second alternative.

Rule §3. If neither rule 87 nor 52 is true, then conduct another observation,
update the posterior probabilities, and apply the three rules again,

The decision error & is the probability of choosing the first alternative when the
second alternative is really true, and conversely for f.

In the context of trying to reach a mastery or nonmastery decision during a
computer-based mastery test, a drill{practice exercise, or a set of embedded
questions in a tutorial, the three decision rules can be stated more explicitly:

After randomly selecting a question and observing the student’s response, we
first caleulate the probability ratio, PR:

s anPmr“ _Pm}w

PR =
R PoPal (1= Py)"

(2)
Pym and Py, are the initiel prior probabilities of mastery and nonmastery,
respectively, Note that if the initial prior probabilities of the alternatives are
equal, as Wald implicitly assumed, then they cancel each other out; thus, PR is
simply the ratio of the probabilities of the sequence of observations under the
two alternatives. Py is the probability of selecting a test question that would
be answered correctly if the mastery hypothesis is true, whereas P, is the prob-
ability of selecting a question that would be answered correctly under the non-
mastery hypothesis. The exponents r and w refer to the number of right and
wrong answers observed thus far.

Rule §1'. 1f PR =(1-p)a, then discontinue observations and choose the
mastery hypothesis.

Rule 82", If PR = /(1 —a), then take no more observations and accept the
nonmastery hypothesis.

Rule 83", 1f /{1 — o) <PR <(1-f)fa, then randomly select another ques-
tion, administer it to the student, increment r or w depending on
whether it is answered correctly or not, re-calculate PR, and apply
rules §1° to §3" again.
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One might legitimately wonder if a test could continue indefinitely, given the
iterative nature of the SPRT—ie., rule §3°. Although Wald mathematically
proved that the SPRT will terminate, in practice it is true that, with a relatively
small number of test questions, the pool could possibly be depleted before a
mastery or nonmastery decision is reached. The number of items necessary to
reach a decision will depend on how a particular student performs and the above
rules. The rules in turn depend on our willingness to make decision errors, the
prior probabilities of the alternatives, and the probability of selecting a test
question that would be answered correctly under each alternative, If there is a
clear trend toward either mastery or nonmastery early in the sequence of obser-
vations, a decision can often be reached with a relatively small number of ran-
domly selected guestions. If the trend is less clear early in the sequence, then
more test questions will be needed to reach a decision.

AN EXAMPLE OF THE SPRT

Before beginning the SPRT decision process, we need to specify our tolerances
for decision errors. Suppose that we are willing to falsely decide mastery when
someone is indeed a nonmaster 2.5 percent of the time (thus a= .025). Similarly,
suppose we are willing to falsely decide nonmastery when someone is in reality
a master at the same error rate (§=.025). In the SPRT the lower bound for the
mastery threshold, LBM is (1 — f)/a, or (1 = .025)/.025 = 39. When the posterior
odds of the mastery vs. the nonmastery alternative become equal to or greater
than 39 to 1, then we stop testing and choose mastery, Similarly, the upper
bound for the nonmastery threshold, UBN, is §/(1 —a), or .025/(1 = .025) =
025641, When the posterior odds of mastery vs. nonmastery become less than
or equal to .025641 to 1, then we terminate the test and choose nonmastery.
Otherwise, if the probability ratio lies between 025641 and 39, then we ran.
domly sample another test item, update the posterior probabilities and check the
ratio against LBM and UBN once again.

SPRT Stage 1

Assuming equal prior probabilities, the ratio of the posterior pmbahilit.ies
after an incorrect answer to the first randomly selected question is .20/.80 = .25
(from Observation 1 above). Since .25 lies between .025641 and 39, we continue.

SPRT Stage 2

After the next question is given, which is answered correctly, the ratio of the
posterior probabilities, PR, is now .347/653 = 531 and still remains between
the LBM and UBN.
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SPRT Stage 3

The third randomly selected question is answered incorrectly, resulting in
posterior odds of 117 to 883, or a PR of 1325, which is neither less than or
equal to 025641 or greater than or equal to 39. Thus, we make no decision and
continue testing.

SPRT Stage 4

The next question is also answered incorrectly, and now PR is .032/968 =
033, approaching but still greater than the UBN.

SPRT Stage 5

The fifth randomly selected question is also missed, resulting in poste-
rior probabilities of mastery and nonmastery of 008 and 992, respectively.
PR is now 008/992 or .0081, which is less than .025641, the threshold
for nonmastery decisions. Thus, we stop sampling test items and conclude
nonmastery for this particular examinee. We would expect in the long run
to be wrong 2.5 percent of the time, since we set @ priori our § level at
025 (ie., falsely concluding nonmastery when the examinee was in fact a
master).

In this example, only five randomly sampled test items were required to make
a decision, given rules I4, IB, 24, 2B, §1', 52" and S§3' above, formula (2),
a=[=.025, and the examinee response pattern: wrong, right, wrong, wrong,
wrong. The number of test items necessary to reach a conclusion with the SPRT
will vary depending on: the probabilities of selecting a question a master or non-
master would answer correctly, specified decision error rates, and the observed
pattern of examinee answers during the test.

Probably the best way to understand how all these factors interact is to
conduct a computer simulation and observe the number of items necessary
to reach an SPRT decision while systematically varying the parameters,
Generally, one will find in such a simulation that fewer test items are
required to reach decisions when the gap between the probabilities in rules
T4 and 24 is greater, or when decision error rates are higher. The converse
obtains as well. These results should not be surprising given the formulation
of the SPRT. Moreover, nonmastery decisions tend to be reached more
quickly than mastery decisions when a pattern of mostly incorrect answers
is observed, compared to a pattern of mostly correct ones—holding all other
factors constant at what would be considered typical levels for mastery
testing situations.

BAYESIAN ADAPTATION [ 98

ASSUMPTIONS NECESSARY TO USE THE SPRT
Random Sampling without Replacement

It is assumed that, when testing a particular examinee, test gquestions are
sampled at random from the available pool of questions matching the instruc-
tional objective and that no question is asked more than once. The reason for
this assumption is that for any given student we want to make a generalization
about how he or she would do if the entire universe of test questions were
administered. That is, given a sample drawn from the universe of items, we make
an inductive inference about the proportion of correct answers that would be
given if the whole universe of test items were administered to this individual at
this particular time. Random selection is one way to help guarantee that samples
of test items given are representative of the total pool,

Local Independence

All major extant adaptive testing strategies, including the SPRT, assume
independence of observations [14, 15]. This means that the probability of
a correct response to any given item should not change depending on the
order in which items are administered. This is required by probability theory
in order to caleulate a joint probability, as is done in Bayes' Theorem. In
practice, if items are selected at random, no feedback is given during the test,
and students are not permitted to return to previous items and change their
answers, then this assumption should be generally met—though it could be
empirically tested.

On the other hand, in a CBI deill/practice situation it is usually a good
idea to give immediate feedback to a student after answering each question
or group of questions. Moreover, item queuing strategies may be employed,
such as interspersing a previously missed gquestion several times subsequently,
or moving from easier to harder questions—and vice-versa-as the situation
dictates [16]. Under these conditions, the assumptions of local independence
and random sampling without replacement could be violated to the extent
that decisions rendered are not valid statistically, However, drill/practice is
usually considered a stage of the instructional and learning process, in contra-
distinction to a criterion-referenced test which might be given before and
after instruction. In a drill/practice sitwation it would appear that the
SPRT could still be used to reach decisions, though it might err more often
than would be expected by the specified o and { error rates. This may be of little
consequence, compared to the consequences of decision errors in more formal
testing situations.
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CRITICISMS OF THE SPRT
Unaccounted Variation in Item Difficulties

The SPRT has been criticized as being inappropriate for test item pools where
items vary in difficulty level, particularly when a rather precise estimate of a
student’s level of achievement is desired [8, 15]. For instance, the probability of
a correct response to one item by a master might be different than the probability
of answering correctly another item. However, average probabilities are used in
rules 1 and 2 above. If one had item difficulty data on all test items for masters
and nonmasters, respectively, then the known estimates of probabilities of
correct responses could actually be used in the Bayesian updating process. In
other words, we would have a separate rule pair for each test item for masters
and nonmasters, respectively. Depending on which item was selected, the corres-
ponding rule pair would be applied in estimating the new posterior probabilities.
Though this method would be more complex to carry out in practice, it
does not differ in principle from what was illustrated above.? In fact, Reckase
has extended this idea of using item parameters with the SPRT and
assumptions from item response theory (IRT) [8]. Instead of using a separate
rule pair for masters and nonmasters for each item, an estimated item
response function in the form of a logistic ogive is used to predict the proba-
bility of a correct response to the item in relation to an underlying achievement
continuum.

If expected probabilities are used instead of specific item difficulty levels at
each stage of Bayesian updating, then the basic issue is the representativeness of
the sampled items with respect to the universe of items, We know rom sampling
theory that more precise estimates of measures can be made as sample size
increases. Here the universe of generalization is the mastery status of an examines
at some point in time. Since the SPRT can terminate rather quickly when
initially there is a clear trend towards one alternative or the other, sampling
error could cause false decisions to be made more often than expected by
the @ priori decision error rates Thus, if average probabilities of a correct
response for masters vs. nonmasters are used with the SPRT when item
parameters vary widely, then it should be used conservatively, so a test will not
end too quickly. This can be accomplished—in theory—by choosing very low
decision error rates.

? The author is currently investigating such an approach, termed EXSPRT. Preliminary
results indicate that, with a database of at least fifty test administrations for rule construc-
tion, the EXSPRT is more efficient than both the basic SPRT discussed here and an item-
response theory (IRT) approach. The EXSPRT appears to be more accurate than the SPRT
und as gecurate s IRT-hased mastery testing.
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AN EMPIRICAL STUDY OF
THE VALIDITY OF THE SPRT

Although the SPRT has been used widely as a decision methodology in
quality control settings, few references to the SPRT have been found in the
educational and psychological testing literature. Ferguson used the SPRT in an
individually prescribed instruction (IPI) framework [6]. Kingsbury and Weiss,
Millman, McArthur and Chou, and Reckase have explored the use of the SPRT
in computer-based mastery testing [7, 8, 15, 17].

The major criticism of the SPRT, as discussed above, is that it does nat expli-
citly account for variability in test item parameters. It is true that the SPRT, in
its original formulation, makes no provision for the fact that some items may
provide more information than others. The question is raised: To what extent
can the SPRT make correct mastery and nonmastery decisions when test items
vary widely in terms of difficulty level, discriminatory power, and chances of
guessing correctly? In other words, how robust is the SPRT decision model?
Since no empirical studies addressing this question have been found, a study was
undertaken.

Computer-based Tests

Two computer-based tests were developed for empirically investigating the
robustness of the SPRT: 1) a test on the structure and syntax of the Digital
Authoring Language, referred to as the DAL test, and 2) a test of knowledge of
how computers functionally work, called the COM test. Test items relevant to
these respective content domains were constructed so that difficulty levels
would be expected to vary. About half the items on each test were multiple-
choice, one-fourth binary-choice, and the remainder short-answer. Subsequent
item analyses indicated that items did vary considerably in difficulty levels and
discriminatory power (see Appendix).

The DAL test consisted of ninety-seven items and was found to be highly
reliable (coefficient alpha = .98). The COM test contained eighty-five items and
was also very reliable (coefficient alpha = .94). These reliability coefficients were
based on results from the two groups described below.

Examinees

The examinees who took the DAL test were mostly either current or former
graduate students in a course on computer-based instruction taught by the
author, Those students who were currently enrolled at the time took the DAL
test twice, once about mid-way through the course when they had some knowl-
edge of the Digital Authoring Language (which they were required to learn in
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order to develop CBl programs), and once near the end of the course when they
were expected to be fairly proficient in DAL, The remainder of the examinees
took the DAL test once. Since the test was known to be long and difficult, no
one was asked to take the test who did not have some knowledge of DAL or
other CBI authoring languages.

About two-thirds of the students who took the COM test were current or
former graduate students in two sections of an introductory course on using
computers in education, also taught by the author, Current students took the
COM test as both a pre- and posttest. The remaining one-third were under-
graduate students taking a beginning course in instructional computing and took
the test once.

Though examinees were not chosen randomly, the timing of testing and other
prior indications of their knowledge in these two content areas helped insure
that there would be fairly wide ranges of scores on both tests. Almost all
examinees had some first-hand experience with computers prior to testing and,
with few exceptions, did not appear to be intimidated by using a computer
terminal or appear to be especially anxious.

Procedure =

Tests were individually administered by the Indiana Testing System [18]. As
an examinee sat at a computer terminal, items were selected at random without
replacement from the total item pool until all items were administered.’
Examinees were not allowed to go back and change previous answers to items,
nor was feedback piven during the test. When the test was finished, complete
data records were stored in a database, including the actual sequence in which
items were randomly administered to a student, response time, literal response
to each item, and the item scoring (right or wrong). Examinees were informed
of their total test scores at the end of the test. The COM test typically took
about thirty to forty-five minutes to complete, whereas the DAL test usually
took between sixty and ninety minutes.

There were 105 administrations of the COM test and fifty-three of the DAL
test. The DAL test was generally perceived as a very difficult test, with a mean
score of 63 percent (5.D. = 24.6). The COM test was easier on the whole, with a
mean of 79 percent correct (5.D. = 13.6).

Method of Determining SPRT Decision Outcomes
The SPRT parameters were set g priori as follows: mastery level = .85, non-
mastery level = 60, @ = §= 025, The SPRT was applied rerroactively, since each

student was originally given all the items in a pool. A computer program was

* Due to a2 minor oversight, only ninety-six items were administered on the DAL test.
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written which retrieved test results for each examinee. Since the order of the
randomly selected items for an examinee was stored in the database, it was
possible to retroactively apply the SPRT after each item record was retrieved
from the database for that individual. [tems were retrieved in the order in which
they were originally administered; the correctness of the student’s response was
noted; the number of right or wrong answers was incremented accordingly; and
the SPRT was applied after each item record was examined. As soon as a
mastery or nonmastery decision could be reached via the SPRT, it was recorded
in a separate file, along with the number of items needed for the SPRT decision,
the total test score, and administrative identification information. This process
was repeated for all examinees for both tests.

Indeed, this post hoc process of determining and recording SPRT decisions
is no different than if it were accomplished in real time during testing, It was
more expedient to do this afterwards with a separate retrieval program than to
modify the existing record keeping software in the testing system,

Results

The mean numbers of items required for SPRT mastery and nonmastery
decisions for both tests are reported in Table 1. It can be seen that about twenty
items were required to reach mastery decisions and a few less for nonmastery
decisions. Had the SPRT been actually used during testing, this would have
resulted in savings of significant amounts of student test taking time, since about
one-fourth to one-fifth of the total item pool was needed on the average for
SPRT mastery decisions.

How well did the SPRT decisions predict the decisions reached on the basis of
total test scores? This required classification of total test scores as either mastery
or nonmastery. Several different methods were investigated for determining
mastery status on the total item pool (see [19] ). Based on a suggestion by Jason
Millman (personal communication), it was decided that the simplest and most
valid method was to choose the mid-point between the mastery and nonmastery
level, and if a total test score was at or above the mid-point (72.5 percent cor-
rect), classify the student as a master. Otherwise, students whose total test
scores were below the mid-point were classified as nonmasters. While it is true
that some misclassifications would be expected to occur for examinees whose
total scores were near the mid-point, it is also true that, in normal nonadaptive
mastery testing, decisions are reached in just this manner—ie,, choosing a single
cut-off and proceeding as above.

The agreement between SPRT mastery decisions and those decisions reached
from total test scores was extremely high (see Table 2). Fifty-one out of fifty-
three SPRT decisions for the DAL test were consistent with total test decisions
based on all ninety-six items. In one case where the SPRT ended with a non-
mastery decision, the total test decision was for mastery. In another case,
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Table 1. Descriptive Statistics on the DAL and
COM Test Decision Qutcomes for Both the SPFRT
Condition and Conventional Total Test Results?

SPRT Conventional
Mastery Nonmastery Mastery Nonmastery Total
DAL Test
N {Administrations) 24 28 25 28 53
Mean Percent Correct 928 385 B9.0 46.3 63.2
(5.0.) 18.3) (22.00 [8.1) [15.8] {246}
Mean Number of Items 181 17.4 a6 a5 96
[5.D.) [12.9) [16.3) . = =
COM Test
Al Administrations) 76 29 77 28 108
Mean Percent Correct 90.5 44.0 B87.7 5G.2 79.0
{8.0.} 16.9) (23.1) (6.4} {10.8] {13.6)
Mean Number of |tems 21.6 186 85 BS B85
8.0} [12.9] [16.3) = - =

2 The DAL test consisted of ninety-seven items on the structure and syntax of the Digital
Authoring Language {rg, = 98k Due 1o a minor oversight, anly ninetysix items were
administered, The COM test consisted of eighty-five items on how computers functionally
work {rFy, = 84} Items on both tests were presented in a different random order for each
BXaminegs,

the SPRT was unable to reach a decision before the DAL test item pool was
exhausted.

For the COM test, 104 out of 105 SPRT decisions agreed with total test
decisions. The single misclassification was the same type as with the DAL test,
a mistaken SPRT nonmastery decision.

Across both tests, the SPRT accurately predicted total test decisions in 153
out of 158 cases—about 98 percent agreement. Expected agreement was 95
percent, since the overall rate was set @ priori at 5 percent (the sum of @ and §).
Thus, in this study the SPRT made fewer classification errors than were expected.

Based on these results, it would appear that the SPRT is a fairly robust model
for mastery decisions, even when test items vary considerably in difficulty level
and discriminatory power. The criticism of the SPRT on theoretical grounds as
being invalid for test item pools with varying parameters was not supporied
empirically in the present study. The SPRT does appear to predict well, if it is
used conservatively—i.e., keeping a and § relatively small—and if test item pools
are highly reliable as were the two pools used in this study. These results are
reminiscent of those of the robustness of analysis of variance (ANOVA) when
the homogeneity of variance assumption is violated.
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Table 2. Agreement between SFRT Decision Outcomes
and Those from Conventional Total Test Results

Conventional
Mastery Nonmastery
DAL Test
Mastery 23 0
SPRT Monmastery 1 28
Mo Decision 1 0

Percent Agreement = 96

COM Test
Mastery 76 0
SPRT Monmastery 1 28
Mo Decision 1] 0

Percent Agreement = 99

Both Tests
Mastery 99 0
SPRT MNonmastery 2 56
MNo Decision 1 0

Percent Agreement = 98

Moreover, the few times the SPRT did err in its predictions, it erred in the
conservative direction—classifying someone as a nonmaster who turned out fo be
a master, Not once in this study did the SPRT mistakenly classify someone as a
master who turned out to be a nonmaster,

DISCUSSION

Although other Bayesian procedures have been used for making mastery
decisions during CBI and testing, they tend to be considerably more complicated
than the straightforward Bayesian sequential probability ratio test (SPRT) [9, 15] .

Use of the Beta Distribution

The procedure adopted by Tennyson and his associates utilizes continuous
prior and posterior beta distributions and a single cut-off [9]. It does not take
into account item parameter information, and can be criticized on the same
theoretical grounds as the SPRT. Moreover, since continuous distributions are
used, numerical integration methods are necessary to find the areas of the posterior
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beta distributions {and hence probabilities) on one side of the cut-off or other.
To obtain reasonable degrees of accuracy, a large number of iterations is nec-
essary for the numerical integration—so many, in fact, that significant delays will
occUr on current microcomputers, making it impractical for real time testing.
This necessitates choosing a cut-off and building in advance a table of proba-
bilities of mastery for each numerical combination of right and wrong answers.
This table can then be included in the CBI program or stored as a file to be
accessed by the program. While this works for relatively small numbers of items,
significant amounts of computer memory or disk storage are required for larger
item pools.”

In short, the Bayesian approach adopted by Tennyson, et al., lacks flexibility
and economy, since a different table must be accessed every time a different
cut-off is chosen. On faster minicomputers and mainframes, probabilities can be
calculated fairly accurately in real time without significant delays (e.g., less than
a second}, and the storage/flexibility issue becomes moot.

A further problem when using a posterior beta distribution is that for typical
cut-offs, incorrectly answering the first few randomly selected items can immedi-
ately lead to a nonmastery decision—i.e., termination of the test. Thus, more Type
I decision errors may occur when items vary considerably in difficulty levels.

Adaptive Mastery Testing

Another approach, adaptive mastery testing (AMT), holds considerable
promise for computer-based tests for large numbers of people [10]. This AMT
approach is based on the item response theory (IRT) initially developed by Lord
and Novick [20]. Item parameter information is used in this approach, a distinct
advantage over the SPRT. Moreover, when a test is being administered, items are
selecied to match as closely as possible the curent estimate of an examinee’s
achievement level, while at the same time maximizing item discrimination and
minimizing guessing. In practice, this means that if an examinee misses an item,
a slightly easier one is presented next, and conversely for harder items. An
empirical study has shown that the AMT approach can yield fairly precise esti-
mates of an examinee's achievement level with significant reductions in test
length, compared to conventional fixed-length tests [10].

The major disadvantage of the AMT approach is the number of examinees
necessary for good estimation of item parameters, which must be done before
AMT is actually used. For the one-parameter model (item difficulty only), a
minimum of 200 examinees are required. For the two- and three-parameter
models, 300 and 1000 examinees are needed, respectively {Weiss, personal
communication).® Therefore, the AMT approach is not practical for many CBI

? For example, approximately 40,000 bytes would be required for 100 items for each
prespecified cut-off, assuming four bytes per floating point entry in the table.
5 See also [14, 21-23].
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and testing applications, where it would be difficult or unrealistic to test such
large numbers of persons in advance.

SPRT

On the other hand, the SPRT is reasonably simple and economical to imple-
ment on any computer system, Less than twenty-five lines of code in most high
level programming and authoring languages is required (see formula [2] above,
and rules SI' to §3°). Moreover, since the computational overhead is small,
SPRT decisions can be reached in a fraction of a second. Thus, the major advan-
tage of the SPRT is its practicality for use in adapting CBI and testing.

The SPRT, like any statistic, can be used improperly. As discussed above, the
danger in using the SPRT with item or question pools which vary widely in diffi-
culty level and/or discriminating power is reaching a mastery or nonmastery deci-
sion before a representative sample of items has been administered to an examinee.
It could happen, just by chance, that very difficult questions were sampled early,
resulting in a premature and incorrect nonmastery decision {and vice-versa). To
guard against this possibility, it was recommended that the SPRT be used with
small o and § levels (Type | and I decision error rates). The present study indicated
that SPRT decisions are highly accurate when a priori error rates are kept small
(i.e., .025).

Furthermore, the nonmastery level should be set to a level higher than that
which would be expected by guessing alone for pools with multiple-choice items.
Preferably, both mastery and nonmastery levels should be established on the
basis of past experience with an item pool, using the average proportions of
correct responses for masters and nonmasters, respectively.

Two Cut-offs Versus One

The fact that the SPRT in effect requires two cut-off levels may cause prob-
lems for those accustomed to a single cut-off. However, when a single cut-ofl is
used, it is known that misclassifications are likely 1o occur when examinees score
near the cut-off [24]. In effect, there is a zone of uncertainty around the cut-
off, where no decisions can be reached without significant risks of misclassifi-
cation. Thus, the outer bounds of this zone of uncertainty effectively define two
cut-off points, similar to the SPRT, The difference is that in the former situation,
the zone of uncertainty will tend to shrink as the test length increases, all other
things equal. The SPRT requires specification of the mastery and nonmastery
levels a priori, which remain unchanged as an adaptive lest progresses.

As was suggested in the above example, the mastery and nonmastery levels
for the SPRT can be based on empirical results from prior use of the test item
pool. Otherwise, following Wald's lead [11, p. 29]. the levels can be established
by answering two questions: 1) What is the highest proportion of correct responses
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on the whole test above which we would mot want to classify someone as a non-
master? 2) What is the lowest proportion of correct responses on the whole test
below which we would not want to classify someone as a master? The answer to
the first question effectively determines the mastery level, and the second the
nonmastery level. The area in between the levels was referred to by Wald as the
“zone of indifference,” comparable to the area of uncertainty surrounding a
single cut-off,

The efficiency of the SPRT is also affected by the distribution of examinee
achievement levels in relation to the zone of indifference. For example, if the
average achievement level lies in the zone of indiffersnce and the scores are nor-
mally distributed, then the SPRT will typically require more items to reach a
decision than if they are distributed bimodally—as expected for pre- and post-
testing occasions,

SUMMARY

It is not currently possible to develop computer-based instruction (CBI) that
can adapt to individual differences in students as do human teachers. Given this
limitation, it is still possible to adapt to students by adjusting the length of
computer-guided practice exercises and computer-based tests. This was illus-
trated by a straightforward application of Bayes' Theorem, It was shown that
the sequential probability ratio test (SPRT), originally devised by Abraham
Wald, extends Bayes' Theorem by explicit consideration of decision error rates
in choosing an alternative,

The SPRT has been largely ignored as a decision model for adapting computer-
based instruction and mastery testing since it does not take into account vari-
ability in item difficulty, discrimination and guessing factors. More complex and
presumably more accurate decision models have been developed which do
account for item parameter variability. However, the utility of these models
for many CBI contexts is questionable. The attractiveness of the SPRT is its
relative simplicity and practicality for use in adapting CBI and testing. It was
contended that, if the SPRT is used conservatively (i.e., with small decision error
rates), it is a viable decision model for adapting CBI and tests.

An empirical study was undertaken to investigate the predictive validity of
the SPRT for making mastery and nonmastery decisions from two pools of test
items with varying parameters. One item pool contained ninety-seven items and
the other eighty-five items. Test length was reduced considerably by use of the
SPRT. Approximately twenty and eighteen items were required on the average
to reach mastery and nonmastery decisions, respectively. Most importantly,
decisions reached by the SPRT agreed very highly with those reached from
administration of the entire item pools to examinees. The SPRT predicted cor-
rectly in 155 out of 158 cases (98% agreement, when expected to be 95 percent
according to @ priori decision error rates), In the few cases where the SPRT
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erred, it failed to correctly classify students who were determined to be masters
from their total test scores. In mo case did the SPRT classify a student as a
master who was subsequently determined to be a nonmaster,

On the basis of these data, it would appear that the SPRT is a viable decision
model for CBI and testing, if used conservatively when tests are suspected or
known to contain items of varying difficulty and discriminatory power,

One could conclude, as did one reviewer of this paper, that if reliable mastery
and nonmastery decisions could be made with about twenty items, then perhaps
fewer test items were needed in the first place. That is, why not construct a
20-item test and simply use it, instead of randomly selecting from a much larger
pool of items? While this solution is certainly more practical, it should be noted
that there was considerable varlation around the mean of twenty items, The
standard deviations were between 14 and 25. For example, if the first four items
were missed, a nonmastery decision was rendered. In other cases, forty to fifty
questions were required to reach a decision with the SPRT parameters used in
this study. In one case, the SPRT could not reach a mastery or nonmastery
decision with a 96-item pool.

The clear advantage of the Bayesian approach is that a test or practice
exercise is no longer than necessary for a given individual. At the same time
accuracy of mastery decisions is not sacrificed, as would be more likely to occur
with a fixed-length test of twenty items.

A second concern is that the Bayesian approach investigated here does not
use information related to item characteristics such as difficulty and discrimina-
tion. If such information is available about test items or practice questions, then
it certainly makes sense to use it—not only for selecting items but also in updating
Bayesian posterior probabilities. This is precisely what is done by the adaptive
mastery testing (AMT) procedure developed by Weiss and his associates. The
disadvantage of this and other IRT-based approaches is that a large number of
test administrations are necessary for adequate item parameter estimation
(200-1000).

The author is currently investigating an extension of the SPRT (EXSPRT)
when prior information is available about the proportion of masters and non-
masters, respectively, who have correctly answered each test item in the poaol,
Based on a sample of fifty test administrations, preliminary results indicate
that the EXSPRT is even more efficient than the SPRT. Using random selection
of items, the EXSPRT needed ten to twelve items on the average to reach a
decision with no more errors than expected. If items were instead selected in
terms of their difficulty, discriminatory power and compatibility with an
examinee’s estimated achievement level, then the EXSPRT became even more
efficient. In other words, more difficult questions were chosen for examinees
predicted to be masters, and easier questions were chosen for those expected to be
nonmasters, while at the same time considering those items which maximally dis-
criminated between masters and nonmasters. With this quasi-intelligent selection
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procedure the EXSPRT required an average of six or seven items to reach a
decision, while still remaining highly accurate. On the other hand, the one-
parameter AMT model required between fifteen and twenty items on the average
to reach a decision. The reader is cautioned that these EXSPRT results are tenta-
tive at this time.

It appears that the Bayvesian method of adjusting the number of questions
that is common to both the SPRT and EXSPRT has considerable practical merit
in computer-based instruction. Computer-guided practice exercises and computer-
based tests can be adapted to students depending on individual performances. It
is also apparent that adaptation can be further enhanced if prior empirical infor-
mation is available on the questions used.

Finally, the approach discussed here is comparable to the kind of reasoning
used in some expert systems inference engines [c.f., 25]. Although the method
of obtaining information. from users clearly differs here from that in a typical
expert system, the fundamental decision methodology is essentially the same—as
those who have developed expert systems without the aid of shells may recog-
nize. Whether we call this method a component of an expert systems approach
or a decision-support system is less important than the Bayesian reasoning it
entails and its demonstrated utility in computer-based instruction.

APPENDIX

Item analyses were performed on two tests: 1) the DAL test—on knowledpe
of the syntax and structure of the Digital Authoring Language (m = 53); and
2) the COM test—on knowledge of how computers functionally work (n = 105
Classical item analvses were first performed. A one-parameter { Rasch) model was
also used to estimate item difficulty levels. Two- or three-parameter models were
not used due to relatively small sample sizes. In the tables that follow the below
notation is used:

Py = proportion of examinees who answered item i correctly.

r, = correlation of scores on item ¢ with total test scores.

b, = difficulty level estimated by the Rasch model for item 7.

S5.E,; = standard error of estimate of difficulty for item i,

DAL TEST

Item Pis Ty b, 5.E, Item  p;, Iyt b, 5.k,
1 89 .51 ~-1.89 49 B H4 62 .16 3a
2 7 46 =73 .39 9 42 61 1.65 6
3 .66 51 03 3s 10 J0 .34 =23 37
4 B9 33 -1.8%9 49 11 J2 .43 =36 .37
3 G i B~ =79 .39 12 79 .65 —.95 40
B 57 4] L5 35 13 91 .50 =215 52
7 53 68 90 35 14 .60 54 41 35

DAL Test (Cont'd)

Item p; Tyt by S.E.
15 42 72 1.65 .36
16 23 .53 il 4
17 A5 72 78 .35
18 A7 34 ~1.67 46
19 .55 .51 78 .35
20 A6 60 2.05 .37
21 45 73 1.40 .36
12 g3 .51 =50 .38
23 LB 44 =10 .36
24 .66 A .03 36
25 A1 35 =111 4]
26 68 57 =10 36
27 b . 4 | L6 35
28 91 48 =215 52
29 A1 47 111 41
30 83 43 128 42
31 57 28 .66 35
32 B9 31 -1.B% 49
33 A1 35 -LI1 4]
34 68 .32 =10 .36
35 Al 44 =111 41
36 91 41 =215 52
37 45 .65 1.40 .36
38 J2 .49 =36 .37
i9 45 47 1.40 36
40 B35 56 147 44
41 B9 56 L9049
42 85 51 —147 44
43 47 .67 1.27 .35
44 I b6 .35
45 87 36 =167 46
46 b4 43 .16 36
47 J00 .73 =23 .37
48 49 69 .15 .35
49 A1 30 -L11 41
50 B0 74 .14 35
il g1 12 1.02 .35
52 60 .71 41 .35
53 58 53 .53 35
54 85 51 147 44
35 J9 .39 =95 40
56 A0 6l 41 .35
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Item  p, 1 b; 5.E;
" 57 B3 .57 -=1.28 42
38 g7 47 =79 39
59 62 48 .29 36
60 a1 41 =215 .32
6l b8 62 —10 6
62 g2 31 =36 37
63 G883 =10 36
i a6 77 03 1
65 60 .72 41 35
66 91 49 =215 52
67 d2 .6l —.36 .37
68 J4 50 =50 3B
a9 a4 26 181 .65
70 S8 .55 53 35
72 47 .27 1.27 35
73 a3 g0 90 .35
T4 d8 74 1.91 37
75 55 69 T8 a5
76 Al .69 1.03 A3
T Nt} 1o =10 36
78 AT 71 Nl 35
79 b4 45 A6 36
80 9 s6 =95 40
Bl 81 S =111 41
82 47 .50 1.27 35
83 62 62 .29 36
54 79 .23 =05 40
85 60 .62 41 .35
86 53 69 90 i
87 40 67 1.78 36
B8 40 .70 1.78 36
89 Sl 0 1.03 35
20 49 .79 1.15 .35
a1 52 B0 .90 35
92 57 .80 66 .35
93 43 71 1.52 36
94 55 .50 18 35
D3 66 .52 03 .36
96 a4 56 16 38
a7 S5 A6 78 A5
98 28 53 2.62 349
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COM Test

Item p, Ty by S.E, Item p, 1 by S.E.
1 65 53 1.05 .24 44 .92 3l ~1.18 39
2 .78 49 26 26 45 29 43 =13 L34
3 98 S0 27 i3 46 A e L | i | .25
4 87 .38 —-47 31 47 T8 35 A3 26
5 76 64 40 .26 48 84 4] =11 .25
6 BT 2a —47 31 49 B2 49 =03 28
1) e iy . b 33 26 50 69 68 B8 .24
8 91 26 —.90 36 51 J20 49 | 25
9 85 44 —.28 30 52 Bl .27 A2 27
10 T4 58 52 23 53 97 30 228 60
11 .29 49 —.78 34 54 13 47 .59 25
12 B9 35 —78 34 55 .85 .39 —-.28 30
13 03 .26 —1.33 41 56 Al 33 A2 .27
14 0 22 B2 24 37 A3 4] 1.21 .23
15 B39 23 —-.78 34 58 58 45 1.57 .23
16 BB 29 =356 32 a9 B4 45 =20 .29
17 B8 48 -67 33 60 B0 42 A9 27
18 85 .52 —.20 .29 61 81 .29 =90 36
12 B7 .59 =37 31 6 o4 2B =133 41
20 W65 33 110 .23 63 96 23 —-1.72 AR
21 79 .10 A9 27 G4 BE 28 —.56 32
12 7 41 .40 26 ) a4 48 1.10 .23
23 .92 26 —1.03 37 5131 B2 62 =03 28
24 1 63 -25 30 67 a6 41 1.62 23
25 B8 A7 =56 32 i1 b5 33 .99 24
26 32 .59 —.03 .28 &9 63 55 1.26 .23
27 81 .51 04 28 70 51 .56 1.81 .22
28 93 57 —-1.33 41 71 14 45 52 e
29 50 39 .91 .22 72 .73 31 S8 i
a0 &1 53 04 28 73 24 29 3.3] 26
3l .90 43 —.90 36 T4 A8 .29 —.67 .33
32 B0 45 12 .27 75 A1 -8 =90 36
33 .67 .39 .90 .24 76 1 I I .26 26
34 B3 14 =11 .29 13 A4 04 1.10 23
35 43 .26 2.28 23 TB B6 48 .99 24
36 90 48 —.90 .36 79 .83 33 L] ] .29
37 B3 63 el .20 80 B2 .50 04 28
15 81 69 A2 2T g1 B4 32 =20 .29
39 98 A0 =271 .73 52 73 2B 46 .26
40 94 43 -1.51 44 B3 A0 39 1.91 .22
41 B9 28 —.78 34 84 B4 21 =11 .29
42 .52 S0 =118 39 85 72 38 .71 25

43 BT 33 —47 31

10.

11.
12,

13.
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