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Abstract 

Map & Analyze Patterns & Structures Across Time (MAPSAT) is a new set of mapping tools that are 

appropriate for analyses of system dynamics and structure in education.  MAPSAT consists of two 

complementary methodologies:  Analysis of Patterns in Time (APT) and Analysis of Patterns in 

Configuration (APC).  In APT, a researcher creates temporal maps by observing phenomena and coding 

sequential and simultaneous event changes with categories in classifications. In APC, a researcher creates 

maps that represent affect-relations among components of a system.  These affect-relations indicate system 

structure during some period of time.  Examples are provided which illustrate a wide range of applications of 

MAPSAT:  patterns of teaching and student engagement in elementary schools; patterns of First Principles of 

Instruction, academic learning time, and student mastery in postsecondary education; sequential patterns of 

scaffolding in technology education of preservice teachers; structural properties of activity settings in a 

Montessori classroom; structural change in mentoring affect-relations when comparing an existing and new 

doctoral program; extension of curriculum maps to include structural relationships among academic 

standards, units of instruction, and student learning achievement; and design of a computer simulation of 

educational systems. 
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Background of the Problem 

 Research methods in education used for much of the 20th century were largely quantitative methods.  

Experimental and quasi-experimental designs were commonplace (e.g., Campbell & Stanley, 1966), and 

analytical techniques included ANOVA, regression analysis and their extensions.  The basic problem was that 

this general linear models approach seldom yielded findings that could be directly linked to educational 

practice.  Within-group and within-person variance was often large, typically obfuscating differences between 

groups that could be attributed to so-called treatments, practices or programs (Medley, 1977; 1979).  

Cronbach & Snow (1977) further extended ANOVA to deal with aptitude-treatment interactions (ATI), with 

hopes of reducing the within-group variance.  But this, too, was seldom successful in yielding significant 

results. 

 In the 1970s and 80s, others began to explore alternative approaches that later became known as 

qualitative and case study methodology (cf. Guba & Lincoln, 1985; Stake, 1995; Yin, 2003).  Qualitative 

methods have become widely used in educational research in the past two decades.  One clear advantage of 

qualitative methods is that rich details of individual cases can give readers helpful insight into and 

understanding of the educational phenomena investigated.  The unavoidable dilemma that often accompanies 

this approach is lack of justification for generalizability of findings.  When samples are purposive and small, 

generalizability in the sense of making inferences from sample to population is seriously compromised.  

Indeed, respected books on qualitative methods avoid the term ‘generalizability’ and instead employ the 

notion of  ‘transfer’ – i.e., results of what was found in this particular investigation may transfer to other 

similar situations the reader encounters (cf. Merriam, 1997).   Mixed methods approaches have become more 

popular in recent years (Creswell, 2003), in which strengths of both qualitative and quantitative approaches 

have been utilized.   

Is there an alternative that bridges qualitative, quantitative and mixed methods?  We believe so.  The 

first author explored in the 1970s pattern analysis methods that later became known as Analysis of Patterns in 

Time (Frick, 1983; 1990).  In the late 1990s, he began collaborating with Kenneth Thompson, who was 
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working on systems theory in which structural and dynamic properties of systems were put forth (cf. 

Thompson, 2005a; 2008d).  Thompson’s work with Axiomatic Theories of Intentional Systems (ATIS) and 

ATIS Graph Theory led to new ways of measuring system structure (cf. Thompson, 2008c), which were 

complementary to temporal pattern analysis for measuring system dynamics.  The combined approach was 

called Analysis of Patterns in Time and Configuration (APT&C) (e.g., see Frick, An & Koh, 2006).  As we 

further developed this methodology, it became clear that what was common to both approaches and different 

from traditional qualitative and quantitative approaches was the notion of mapping the patterns, analyzing the 

maps, and realizing that structural change across time is also part of this approach.  Thus, in 2007, we 

changed the nomenclature to MAPSAT:  Map & Analyze Patterns & Structures Across Time.  

What is MAPSAT?  

MAPSAT is a new set of relation mapping and analysis methods. MAPSAT contains two 

methodologies:  Analysis of Patterns in Time (APT) and Analysis of Patterns in Configuration (APC). 

APT detects temporal relations that linear statistical models cannot, nor can Bayesian networks. APC 

measures structural properties that are determined from axiomatic theory, unlike social network analysis 

(SNA). APC can measure hyper-graphs of multiple affect-relation sets, setting it apart from other forms 

of network analysis. Both APT and APC have mathematical foundations in graph theory.  

In traditional quantitative research methods that are based on algebraic linear models, we 

typically obtain separate measures of variables, and then we statistically analyze relations among 

measures. That is, we relate measures. Alternatively, we could measure relations directly. This is not a 

play on words, but a significant conceptual shift in thinking about research problems and how we collect 

and analyze data. 

Frick (1990) invented a procedure called Analysis of Patterns in Time (APT) in order to map 

temporal relations. Phenomena are observed and coded with categories in classifications. The resulting 

temporal maps are then queried for temporal sequences of events. For example, Frick (1990) found that if 

interactive (direct) instruction was occurring, the likelihood of student engagement was very high 
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(APTprob = 0.97). However, when non-interactive (non-direct) instruction was occurring, then students 

were engaged much less (APTprob = .57). Regression analysis of the same data was only able to predict 

33 percent of the variance in student engagement.  

Thompson (2005b; 2008d) has developed Axiomatic Theories of Intentional Systems (ATIS). 

ATIS Graph Theory provides us a way to measure 17 structural properties of systems that include 

strongness, flexibility, interdependence, wholeness and vulnerability  This approach is called Analysis of 

Patterns in Configurations (APC). A recent study of a Montessori classroom indicated that some 

structural properties were markedly different in two different types of learning settings:  head problems 

and morning work period. In the latter, for example, there was much more interdependence with respect 

to affect-relation sets for choice of learning activities and guidance of learning (Frick & Koh, 2007).  

How is MAPSAT different from traditional methods of measurement and analysis? MAPSAT 

differs from regression methods in that these latter methods assume some kind of mathematical function 

for modeling a relation. In these traditional methods, variables are measured separately and then statistical 

association is attempted according to the function assumed (e.g., linear, curvilinear, logistic). In 

MAPSAT, relations themselves are mapped directly, and then later different types of patterns are counted 

during analysis. MAPSAT is a logical analysis of relations, not a statistical analysis of separate measures.  

MAPSAT is a form of network measurement and analysis. More specifically, Bayesian Network 

Analysis (BNA) and Social Network Analysis (SNA) are similar to MAPSAT in that they are types of 

network analysis and are grounded in mathematical digraph theory (Thompson, 2008c; Jensen & Nielsen, 

2007; Brandes & Erlebach, 2005). These three approaches to network analysis are more closely related, 

compared with extant methods of measurement and regression analysis described above. While MAPSAT 

APC methods and SNA do have common aims, the advantages of MAPSAT are its theory basis (ATIS) 

and ability to measure structural properties of hyper-graphs of multiple sets of affect-relations.  
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An Example:  Analysis of Patterns in Time (APT) and Academic Learning Time 

In the first major study to compare APT with linear models (Frick, 1990), 25 mildly handicapped 

children were observed throughout the day in their elementary school classroom learning environments in 

central and southern Indiana.  Each child was observed between 8 and 10 hours across multiple days over a 

semester.  These environments ranged from self-contained classrooms for special education students to 

regular classrooms in which the mildly handicapped children were included.  Trained classroom observers 

coded the kinds of academic learning activities provided, and within each reading and mathematics activity 

the behaviors of target students and instruction made available to the student were coded at one-minute 

intervals.  During data analysis, student behaviors at each time sampling point were collapsed into two 

categories:  engagement and non-engagement.  Similarly, instructional behaviors at each sampling point were 

collapsed into two categories:  direct (interactive) instruction and non-direct (non-interactive) instruction.    

Linear models approach.  As can be seen in Figure 1, if the data are analyzed with the linear models 

approach, student engagement can be predicted by a regression equation.  Approximately 33 percent of the 

variance in student engagement can be accounted for by the amount of direct instruction provided.  While this 

finding shows that there is a statistically significant positive relationship (p < 0.05) that is moderate in size, 

there is still a great deal of uncertainty (67 percent of the variance is not predictable).  Notice that the vertical 

lines (blue) indicate the distances between the data points and the regression line (red), indicating errors in 

prediction.  The relationship between direct instruction and engagement is represented by a function for a line.  

In this example, the function for the line is:  EN = 0.57 + 0.40DI.  Each data point represents the overall 

proportion of engagement for a particular student, paired with the overall proportion of direct instruction 

provided to that student.  Engagement is aggregated separately from direct instruction for each case, so there 

is one overall engagement score for a student and one overall direct instruction score.  Thus, there are 25 data 

pairs from which the regression equation is estimated.  In Table 1, the left two columns contain p(DI) and 

p(EN) for each student.  For example, for student 1 p(DI) = 0.50 and p(EN) = 0.80, which is one of the x,y 

data pairs in Figure 1. 
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Figure 1.  The linear models approach to analyzing a relation 

 

APT analysis.  The same data were analyzed from an APT perspective.  From this perspective 

data are aggregated differently. The joint occurrences of student engagement and instruction were 

counted in order to form probabilities or proportions.  For example, for student 1, the probability of (DI & 

EN) = 0.46; p(DI & NE) = 0.04; p(EN | DI) = 0.92; and p(EN | ND) = 0.67.  These joint and conditional 

probability estimates for this student were based on nearly 500 data points where the joint occurrences of 

instruction and engagement were observed and coded.  Similar probabilities were estimated for the 

remaining 24 systems, and then the probabilities were averaged.   Thus, there were nearly 15,000 data 

points representing the joint occurrences of direct instruction and engagement in the 25 systems.  See 

Table 1. 
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Table 1.  Temporal Relationships:  Joint Occurrences of Direct Instruction (DI), Student Engagement (EN), Non‐

direct Instruction (ND), and Student Non‐engagement (NE) in Columns 3 ‐ 6; Conditional Occurrences in 
Columns 7 ‐ 8. 
 
 

p(DI) 
 

p(EN) 
 

p(DI & EN) 
 

p(DI & NE) 
 

p(ND & EN) 
 

p(ND & NE) 
 

p(EN|DI) 
 

p(EN|ND) 
 

0.50  0.80  0.46  0.04  0.34  0.16  0.92  0.67 
0.39  0.49  0.37  0.02  0.12  0.49  0.95  0.20 
0.27  0.56  0.26  0.01  0.30  0.43  0.97  0.41 
0.34  0.69  0.34  0.00  0.35  0.31  1.00  0.53 
0.48  0.73  0.47  0.01  0.25  0.26  0.98  0.49 
0.40  0.75  0.39  0.01  0.35  0.25  0.98  0.59 
Etc. 
 

Etc. 
 

Etc. 
 

Etc.
 

Etc.
 

Etc.
 

Etc. 
 

Etc.
 

Mean  
(SD) 

Mean 
(SD) 

Mean  
(SD) 

Mean
(SD) 

Mean
(SD) 

Mean
(SD) 

Mean 
(SD) 

Mean
(SD) 

0.432  
(0.144) 

0.741 
(0.101) 

0.416  
(0.139) 

0.015
(0.010) 

0.324
 (0.114) 

0.243
(0.104) 

0.967 
(0.029) 

0.573
(0.142) 

 

As can be seen in the two far-right columns in Table 1, conditional probabilities for student engagement 

during direct instruction and non-direct instruction are presented.  The mean probability of student 

engagement during direct instruction is very high (0.967).  Students are about 1.7 times more likely to be 

engaged during direct instruction than during non-direct instruction (0.967/0.573).  Another way to look 

at this is the likelihood of non-engagement during non-direct instruction.  Students are about 12.9 times 

more likely to be off-task during non-direct instruction ((1 – 0.573) /(1 – 0.967)).  These patterns are very 

clear and consistent across 25 different systems.  When teachers interacted with those target students 

either individually or in groups that included those students, they were very likely to be on-task.  These 

probability ratios (odds) are in principle no different than the odds of getting some kind of cancer later in 

life being between 5 and 10 times greater for heavy smokers, when compared with non-smokers (Kumar,  

Abbas & Fausto, 2005).  This temporal relationship is not necessarily causal, but nonetheless is a 

predictable pattern. 

An Example:  Analysis of Patterns in Time (APT) of Course Evaluation Data 

 A recent study was completed by Frick, et al. (2008), in which APT was used to analyze 

relationships among scales derived from a course evaluation instrument on Teaching and Learning 
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Quality (TALQ).  In this study, 464 college students completed the TALQ instrument in 12 university 

classes in business, philosophy, history, kinesiology, social work, informatics, nursing, and health, 

physical education and recreation.  Unlike the Frick (1990) study, in which approximately 500 samples of 

teacher and student behavior were collected for each system, in the TALQ study there was just one set of 

measures for each case.  In Table 2, results are shown for frequencies and percentages of patterns in 

college classrooms.  

Table 2.  Data from Frick et al. (2008) study for the APT Query:  If Agreement on First Principles = ? and 
Agreement on Successful Engagement = ?, then Student Mastery = ? 
 

 Agreement on First Principles 

  No Yes 

  Agreement on Successful Engagement Agreement on Successful Engagement 

  No Yes No Yes 

  
Instructor Rating of 

Student Mastery 
Instructor Rating of 

Student Mastery 
Instructor Rating of 

Student Mastery 
Instructor Rating of 

Student Mastery 

  Count % Count % Count % Count % 

Low (0-5) 15 31.9% 1 5.6% 1 2.3% 2 1.4%

Medium (6-8) 29 61.7% 12 66.7% 41 95.3% 112 75.7%

High (8.5-10) 3 6.4% 5 27.8% 1 2.3% 34 23.0%

Total 47 100.0% 18 100.0% 43 100.0% 148 100.0%

 

For example, it can be seen from the APT query, ‘If Agreement on First Principles is No and if 

Agreement on Successful Engagement is No, then Instructor Rating of Student Mastery is Low?’, this 

pattern occurred in 15 out of 47 cases, for a probability estimate of 0.319.  On the other hand, for the 

query, ‘If Agreement on First Principles is Yes and if Agreement on Successful Engagement is Yes, then 

Instructor Rating of Student Mastery is Low?’, this pattern occurred in just 2 out of 148 cases, for a 

probability estimate of 0.014.  Thus, it can be seen that when students did not agree that First Principles 

of Instruction occurred in their classes nor were they successfully engaged, then the likelihood of being 
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rated as a low master by their instructor is much greater than when students did agree that First Principles 

and successful engagement (ALT) had occurred.  The ratio of these probabilities, 0.319 divided by 0.014, 

is 22.8.  Thus, students in this study were  about 23 times more likely to be rated at a low mastery level of 

course objectives when First Principles and ALT were perceived to be largely absent in a course, 

compared with when both were present.  Similarly, students were about 3.6 times more likely to be rated 

as high masters, when both First Principles and ALT were present compared with their absence, 

according to student ratings on TALQ scales (Frick et al., 2008).   

 These relationships are nonlinear.   In fact, we have no way to calculate a tri-variate correlation to 

measure a 3-way association such as we have with these APT queries.  If we do a linear regression in 

order to predict the student mastery level from a combination of First Principles and ALT, only 8 percent 

of student mastery is predicted by student successful engagement.  While this relationship is highly 

statistically significant, what is noteworthy is that First Principles of Instruction does not contribute 

significantly to the prediction of student mastery in this linear model!  The reason for this is based on the 

assumptions for regression analysis:  a linear, additive model.  No such assumption is made in APT.  In 

Table 2, it is patent that presence and absence of First Principles and ALT do appear to make a big 

difference when predicting low and high mastery levels, as described above.   On the other hand, medium 

levels of mastery are less dependent on the presence versus absence of First Principles and ALT 

(0.953/0.667 = 1.43), or odds of about 1.4 to 1.  These patterns are obfuscated by traditional linear 

models, whereas they are quite clear in an APT analysis.  Frick (1983) proved mathematically that APT 

can predict patterns that the linear models approach cannot.  The Frick (1990) and Frick et al. (2008) 

studies clearly illustrate this fact empirically. 

Examples of Temporal Maps, APT Queries and Computations 
 
 Sequential patterns (frequency but not duration).  Koh (2008) investigated how teachers in 

educational technology classes used scaffolding strategies.  Scaffolding is one of the strategies that is 

often discussed in problem-based learning methods, as well as in instructional design for complex 
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learning (cf. van Merriënboer & Kirschner, 2007; van Merriënboer, Clark and de Croock, 2002).  She 

videotaped university classes for about 27 hours.  She then coded the videotapes using the classifications 

which are the column headings in Map 1.  To protect identities of students, their names have been 

changed to capital letters (C, H, L and M in this sample extracted from one of the classes she observed).   

Map 1. Coding Example adapted from Joyce Koh’s dissertation (2008), p. 38.  Cell entries have been highlighted 
in green to indicate instances of the pattern:  If student interaction is Tech Help, then instructor 
interaction is Show N Tell? 
 

Tem‐
poral 
Order 

Instruc‐
tional 
Activity  From  To  Student interactions  Instructor interactions  Resources 

Equip‐
ment 

1  Lab  Instructor  C  Null  progress check  Project/ 
Assignment 
descriptions 

Student 
compu‐
ter 
terminal 

2  Show N Tell 
3  C  Instructor  clarify task 
4  Instructor  C    Direction maintenance 
5  C  Instructor  tech help 
6  Instructor  C    Show N Tell   ª 
7  C  Instructor  Clarify content 
8  Instructor  C    Direction maintenance 
9  Frustration Control 
10  Direction maintenance 
11  M  Instructor  can't hear 
12  Instructor  M    can't hear 
13  L  Instructor  tech help 
14  Instructor  L    progress check  P 
15  Show N Tell ª 
16  H  Instructor  Tech help 
17  Instructor  H    progress check  P 
18  H  Instructor  Share content 
19  Instructor  H    Show N Tell 
20  L  Instructor  tech help 
21  Instructor  L    Show N Tell ª 

 

A particular pattern has been highlighted in Map 1 for purposes of illustration.  Koh (2008) was interested 

in mapping the temporal sequences but not durations of events, so there is no classification for date and 

time in Map 1.  Each time a new event is observed, a new row is added; thus sequence in time runs from 

top to bottom of the temporal map.  When an event is observed in one classification, it is assumed to 

continue until another relevant event is observed.  For example, the Instructional Activity was initially 

coded as Lab, and that activity did not change during the observation, while 13 Instructor Interactions 

were observed. 
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The coded instructional sequences were also used to make APT queries about the joint 

probabilities of categories within and between classifications. For example, to find out how instructors 

responded to student requests for Tech Help, the following APT query could be set-up: 

IF Student Interaction = Tech Help, THEN Instructor Interaction = Show and Tell ? 

Using the information in Map 1, it can be seen that there were 4 instances of student requests for Tech 

Help.  Given that Tech Help was true, it was followed 3 times by Show and Tell and 2 times by Progress 

Check. Therefore, if students asked for Tech Help, the probability of this instructor responding by Show 

and Tell was 3/5 = 0.60.  The symbol ª  has been added to the map to show where the pattern is true, and 

the symbol P was added to show where the pattern is false in the map. 

 Sequential patterns (both frequency and duration).  Map 2 illustrates a temporal configuration 

when both frequency of events and their duration are of interest in APT.  This map has also been 

highlighted in colors in order to illustrate an APT query and results. 

Map 2.   Example of a temporal map with highlighting for the APT query:  If target student is Mona and 
instruction is direct, then student engagement is on‐task?  Green areas represent where the pattern is 
true, while pink areas indicate that the pattern is false. 
 

Clock  
Time 

Target 
Student  Instruction 

Student 
Engagement 

9:01  Mona  Direct  Off‐task 
9:02       

9:03      On‐task 
9:04       
9:05       

9:06      Off‐task 

9:07      On‐task 

9:08    Non‐Direct   
9:09       

9:10       
9:11      Off‐task 
9:12       
9:13  Null  Null  Null 
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Query for Map 2: 

IF target student IS Mona 
AND instruction IS direct,  

THEN student engagement IS on‐task?  
 
Query Results from Map 2: 

Cumulative duration = (9:06 – 9:03) + (9:08 – 9:07) = 4 minutes 
Cumulative frequency = 2 
Likelihood = 2 out of 4 = 0.50 
Proportion time = 4 minutes out of 7 = 0.57  

 
Space does not permit further elaboration here.  However, this example shows the need for MAPSAT 

software to allow entry of codes and times, as well as to do the tabulation of event frequencies and 

accumulation of durations in order to obtain results of APT queries. 

MAPSAT:  Analysis of Patterns in Configurations (APC) 

While APT is useful in coding and analyzing system dynamics (temporal sequences and changes), it 

does not capture system structure or structural changes.  Thompson (2005a, 2005b) provided the significant 

insight that APT could be extended to characterize structure or configuration of educational systems, in 

addition to characterizing system dynamics – or processes in education – as APT was designed originally to 

do. Configural patterns characterize structures in education – i.e., how education is organized, or relations 

between parts.   Axiomatic Theories of Intentional Systems (ATIS) provides the theoretical foundation for 

quantitative measures of system structure required by APC (Thompson, 2005a; 2005b; 2008c).  These 

measures include:  complexity, hierarchical order, heterarchical order, compactness, centrality, flexibility, 

active dependence, passive dependence, independence, interdependence, strongness, unilateralness, weakness, 

wholeness, and vulnerability.  

ATIS is a systems theory that predicts relationships among system properties, both structural and 

dynamic.  There are over 200 axioms and theorems in ATIS.  For example, #106 predicts:  If system 

strongness increases, then toput increases.  See Thompson (2008a; 2008d) for further details and Frick 

and Thompson (2008) for examples of axioms relevant to systemic change in education 
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Structural relations are denoted in APC by system components that are connected by ‘affect-

relations.’  For example, in Map 3, the ‘support’ affect-relation is depicted.  ‘Affect-relation’ is used in 

the sense of a verb—e .g., x affects y1.  The affect-relation set with respect to Support:  {(s1,s2) 

(s2,s1)(t2,s1)} is another way of characterizing what is illustrated in the digraph (directed graph) in Map  

Map 3.  Example of 'support' affect‐relations 

 

3.  During the observation of this small system, student s1 supports s2; s2 supports s1; and teacher t2 

supports s1.  This configuration persists over some period of time and represents system structure with 

respect to the ‘support’ affect-relation. 

Frick and Koh (2007) explored in a case study how classroom structures support student 

autonomy in a Montessori classroom.  Ten one-hour observations were conducted in April, 2006, in an 

upper elementary Montessori classroom located in southern Indiana. It had twenty-eight students, ages 

10-12, a Montessori-certified head teacher and two assistant teachers.  

Data on interactions between teachers, students and classroom resources were collected through 

ethnographic field notes.   The constant comparative method (Creswell, 1998) was used to identify 

common interaction patterns and classroom activity structures.  Digraphs were constructed based on these 

observations and field notes for two distinctly different kinds of activity settings:  Head problems and the 

Morning Work Period.  During Head Problems, all the students were expected to solve mathematics 

problems on a worksheet prepared by the teacher for that day that was distributed to the entire class 

(typically lasting about 45 minutes).  On the other hand, during Morning Work Period (typically lasting 3 

hours), students were individually free to choose Montessori Works and engage in learning associated 

                                                            
1 Affect-relations are not about feelings or emotions—i.e., when ‘affect’ is used as a noun. 
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with those Works for as long as they wanted.  Then a student could choose another work, etc.  During the 

Morning Work Period students were often seen to be helping each other, many times working in 

twosomes or threesomes on the same activity; other students would individually meet with one of the 

teachers who would provide feedback on previously completed works.  Figure 3 illustrates three ATIS  

Figure 3.  Structural properties for 'support' affect‐relation in Montessori classroom during Head Problems and 
Morning Work Period (from Frick and Koh, 2007) 
 

 

property measures that contrast the different activity structures typical in this Montessori classroom.  It 

can be seen that there was much more ‘complete connectivity’, ‘interdependence’ and ‘strongness’ of the 

structure for ‘support’ affect-relations during the Morning Work Period, when contrasted with the Head 

Problems activity.  How were these structural property measures obtained?  These measures are defined 

in ATIS Graph Theory (Thompson, 2008c).  Examples of these definitions are provided below: 
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Space does not permit elaboration of these measures here; however, it is important to note that these 

measures were created such that they are consistent with ATIS axioms.  Predicate calculus is used to 

define system properties and their measures.  See the ATIS Glossary (Thompson, 2008b). 

Example of Measuring Structural Change in a System 

 The Instructional Systems Technology (IST) Department at Indiana University has changed its 

Ph.D. program in order to give students more experience in doing research and to provide more faculty 

and peer mentoring.   Maps 4 and 5 depict the differences in structure with respect to the ‘mentoring’ 

affect-relation.  These maps are provided for purpose of illustration here, and so do not include all faculty 

and Ph.D. students in the IST program.  By visual inspection, it is clear that more mentoring appears to be 

going on in the new Ph.D. structure, depicted by the red arrows in the digraphs.  Table 4 shows the results 

of the structural measures, using results from MAPSAT software developed by Frick, Myers and York 

(2008).   This example shows that, in the new doctoral program, the structure of mentoring affect-

relations is more complex, flexible, interdependent and strong than the old program.  The new program is 

also less vulnerable with respect to mentoring affect-relations.  The number of components remains 

unchanged, but the structure has changed.  See Thompson (2008c) for definitions of structural properties 

and their respective measures. 
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Map 4.   Structure of 'mentors' affect‐relation in old Ph.D. program, e.g., Professor Boling mentors Marisa and 
Nichole. 

 

Map 5.  Structure of ‘mentors’ affect‐relation for new Ph.D. program 

 

Table 3.  Comparison of structural property values in old vs. new IST Ph.D. programs 

ATIS Structural Property  Old IST Ph.D Structure  New IST Ph.D. Structure 
Active Dependence  18.81 36.34 

Complexity  5 14 
Flexibility  0 44.90 

Interdependence  0 37.62 
Size  7 7 

Strongness  18.81 89.80 
Vulnerability  36.38 0 

 

 

An Example of Extending Curriculum Mapping with MAPSAT APC 

Heidi Hayes Jacobs (2004) is recognized as a pioneer in curriculum mapping, although this idea 

has been around for at least 20 years. Map 6 illustrates how a curriculum map is extended by goals that 

are linked to each other, to instructional units, and indirectly to students.  
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Map 6.   Maps of two different classrooms, with MAPSAT Curriculum Dashboards illustrating different structure 
property values for strongness, flexibility, wholeness and vulnerability. 

 
 

Assume that Goals 1 to 5 are important goals for students to achieve that prepare them for careers 

in science, technology, engineering and mathematics (STEM). Furthermore, notice that these goals are 

not independent but instead related to each other. For example, Goal 2 is prerequisite and supportive of 

Goals 3, 4 and 5. 

Notice also that the curriculum goal maps for Classroom X and Y are identical, as can be seen in 

the gray shaded areas in the top part of Map 6. However, the remaining connectedness in the two 

classrooms is quite different. Classroom X is more strongly connected than is Y, even though they have 

identical curriculum goal structures. In the map of Classroom X, more students have mastered objectives 

in the instructional units, and those units in turn are more connected to the curriculum goal structure—

when compared with Classroom Y’s map.  
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The maps in Map 6 go beyond what typical curriculum maps represent. Notice that these maps 

also include instructional units (IUs) that each classroom has completed over a period of 3 months, and 

the linkages of those IUs to each curriculum goal. For example in Classroom X, note that Goal 1 is 

supported by IUs A and B, and that Goal 2 is supported by IUs A, B, C and D. Alternatively, in Classroom 

Y, Goal 1 is not supported by any instructional unit, and Goal 2 is supported by H only. Finally, note how 

students in each classroom are connected to each instructional unit. A solid line indicates that that student 

has mastered the learning objectives in the instructional unit, whereas a dashed line indicates partial 

mastery. No line between a student and an IU means that the student failed to master objectives of that 

unit.  

The MAPSAT Dashboard. Imagine for a moment that a school has an electronic dashboard that 

shows measures of properties of their Student-Instructional Unit-Curriculum maps for all classrooms and 

students in the school. Similar to how maps for classrooms are represented in Map 6, maps for an entire 

school could be measured. School principals, teachers, students and their parents could “see” how their 

school is doing at any time. A computer dashboard is analogous to the cockpit instrument panel that a 

pilot uses to fly an airplane. The instrument panel tells the pilot about important indicators such as the 

plane’s heading, airspeed, and status of landing gear. 

If a school system’s curriculum goal structures are designed to help prepare high school students 

for STEM careers, then the MAPSAT Curriculum Dashboard provides metrics about the connectivity of 

classroom instruction and student learning to those STEM-related goals. Structures that have greater 

strongness, flexibility, interdependence and wholeness and with less vulnerability will better prepare 

students for STEM careers. The MAPSAT Dashboard will provide indicators of the effectiveness of 

STEM career preparation in a high school by measuring the structure of its curriculum, instruction and 

student learning.   
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Potential for Use of MAPSAT in Simulating Educational Systems 

Learning to teach is an example of complex learning. We are designing a digital simulation that 

will allow preservice teachers to experiment with and practice providing individualized instruction for 

learners. Briefly, given a group of virtual students and specific academic goals, the teacher must select 

instructional activities that are effective, efficient, and engaging—i.e., take into consideration the student's 

interests, prior knowledge, and zone of proximal development; make best use of human and technological 

resources; and adhere to First Principles of Instruction (cf. Merrill, Barclay & van Schaak, 2008; van 

Merriënboer, Clark & de Croock, 2002). The simulation requires the teacher to perform the whole task 

initially in its simplest form, with one academic goal and one to three virtual students. Once the teacher 

achieves mastery at this level, more goals and students are added, requiring greater skill in grouping 

students for activities and utilizing technology.  

We anticipate using MAPSAT in this simulation in two ways. First, as with the Curriculum 

Dashboard, MAPSAT's APC can be used to calculate the effectiveness of the teacher's decisions based on 

the property values for the virtual classroom. A teacher who is making good choices in matching students 

and instructional activities will have a classroom system with above average values for strongness, 

interdependence, and wholeness. Second, the teacher's decisions can be analyzed using MAPSAT's APT. 

For example, particular sequences may be queried during the simulation and when found may trigger 

feedback to help the teacher identify and correct misperceptions. An APT map may also be generated for 

use in post-simulation debriefing to help the teacher see decision patterns and devise new strategies for 

subsequent sessions. 

Summary 

 In this brief report we have attempted to provide an overview of a new way of measuring systems 

relations and systems change by providing a number of examples of MAPSAT research applications.  We 

are in the process of developing computer software in order to facilitate the use of MAPSAT methods by 

other researchers.  We believe that MAPSAT has great potential for helping researchers to better 
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understand systemic change in education, as well as to evaluate instructional strategies and theories and 

complex learning.  MAPSAT provides a different mindset for quantifying and examining relationships 

among phenomena.  MAPSAT provides rigor in how patterns are identified and analyzed in educational 

systems. 
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